feat: Add properties of the Lorentz basis
This commit is contained in:
parent
9cacfb6f82
commit
6e96b558d5
2 changed files with 79 additions and 9 deletions
|
@ -21,6 +21,55 @@ open Matrix
|
|||
def σMat (μ ν : Fin 4) : Matrix (Fin 4) (Fin 4) ℝ := fun ρ δ ↦
|
||||
η^[ρ]_[μ] * η_[ν]_[δ] - η_[μ]_[δ] * η^[ρ]_[ν]
|
||||
|
||||
lemma σMat_in_lorentzAlgebra (μ ν : Fin 4) : σMat μ ν ∈ lorentzAlgebra := by
|
||||
rw [mem_iff]
|
||||
funext ρ δ
|
||||
rw [Matrix.neg_mul, Matrix.neg_apply, η_mul, mul_η, transpose_apply]
|
||||
apply Eq.trans ?_ (by ring :
|
||||
- ((η^[ρ]_[μ] * η_[ρ]_[ρ]) * η_[ν]_[δ] - η_[μ]_[δ] * (η^[ρ]_[ν] * η_[ρ]_[ρ])) =
|
||||
-(η_[ρ]_[ρ] * (η^[ρ]_[μ] * η_[ν]_[δ] - η_[μ]_[δ] * η^[ρ]_[ν])))
|
||||
apply Eq.trans (by ring : (η^[δ]_[μ] * η_[ν]_[ρ] - η_[μ]_[ρ] * η^[δ]_[ν]) * η_[δ]_[δ]
|
||||
= ((η^[δ]_[μ] * η_[δ]_[δ]) * η_[ν]_[ρ] - η_[μ]_[ρ] * (η^[δ]_[ν] * η_[δ]_[δ])))
|
||||
rw [η_mul_self, η_mul_self, η_mul_self, η_mul_self]
|
||||
ring
|
||||
|
||||
/-- Elements of the Lorentz algebra which form a basis thereof. -/
|
||||
@[simps!]
|
||||
def σ (μ ν : Fin 4) : lorentzAlgebra := ⟨σMat μ ν, σMat_in_lorentzAlgebra μ ν⟩
|
||||
|
||||
lemma σ_anti_symm (μ ν : Fin 4) : σ μ ν = - σ ν μ := by
|
||||
refine SetCoe.ext ?_
|
||||
funext ρ δ
|
||||
simp only [σ_coe, σMat, NegMemClass.coe_neg, neg_apply, neg_sub]
|
||||
ring
|
||||
|
||||
lemma σMat_mul (α β γ δ a b: Fin 4) :
|
||||
(σMat α β * σMat γ δ) a b =
|
||||
η^[a]_[α] * (η_[δ]_[b] * η_[β]_[γ] - η_[γ]_[b] * η_[β]_[δ])
|
||||
- η^[a]_[β] * (η_[δ]_[b] * η_[α]_[γ]- η_[γ]_[b] * η_[α]_[δ]) := by
|
||||
rw [Matrix.mul_apply]
|
||||
simp only [σMat]
|
||||
trans (η^[a]_[α] * η_[δ]_[b]) * ∑ x, η^[x]_[γ] * η_[β]_[x]
|
||||
- (η^[a]_[α] * η_[γ]_[b]) * ∑ x, η^[x]_[δ] * η_[β]_[x]
|
||||
- (η^[a]_[β] * η_[δ]_[b]) * ∑ x, η^[x]_[γ] * η_[α]_[x]
|
||||
+ (η^[a]_[β] * η_[γ]_[b]) * ∑ x, η^[x]_[δ] * η_[α]_[x]
|
||||
repeat rw [Fin.sum_univ_four]
|
||||
ring
|
||||
rw [η_contract_self', η_contract_self', η_contract_self', η_contract_self']
|
||||
ring
|
||||
|
||||
lemma σ_comm (α β γ δ : Fin 4) :
|
||||
⁅σ α β , σ γ δ⁆ =
|
||||
η_[α]_[δ] • σ β γ + η_[α]_[γ] • σ δ β + η_[β]_[δ] • σ γ α + η_[β]_[γ] • σ α δ := by
|
||||
refine SetCoe.ext ?_
|
||||
change σMat α β * σ γ δ - σ γ δ * σ α β = _
|
||||
funext a b
|
||||
simp only [σ_coe, sub_apply, AddSubmonoid.coe_add, Submodule.coe_toAddSubmonoid,
|
||||
Submodule.coe_smul_of_tower, add_apply, smul_apply, σMat, smul_eq_mul]
|
||||
rw [σMat_mul, σMat_mul, η_symmetric α γ, η_symmetric α δ, η_symmetric β γ, η_symmetric β δ]
|
||||
ring
|
||||
|
||||
|
||||
end lorentzAlgebra
|
||||
|
||||
end spaceTime
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue