refactor: Text based Lint

This commit is contained in:
jstoobysmith 2024-10-29 11:23:08 +00:00
parent 319089ad54
commit 7010a1dae2
12 changed files with 54 additions and 52 deletions

View file

@ -275,8 +275,8 @@ lemma accYY_ext {S T : MSSMCharges.Charges}
/-- The symmetric bilinear function used to define the quadratic ACC. -/
@[simps!]
def quadBiLin : BiLinearSymm MSSMCharges.Charges := BiLinearSymm.mk₂ (
fun (S, T) => ∑ i, (Q S i * Q T i + (- 2) * (U S i * U T i) +
def quadBiLin : BiLinearSymm MSSMCharges.Charges := BiLinearSymm.mk₂
(fun (S, T) => ∑ i, (Q S i * Q T i + (- 2) * (U S i * U T i) +
D S i * D T i + (- 1) * (L S i * L T i) + E S i * E T i) +
(- Hd S * Hd T + Hu S * Hu T))
(by

View file

@ -206,8 +206,8 @@ lemma lineCube_quad (R : MSSMACC.AnomalyFreePerp) (a₁ a₂ a₃ : ) :
section proj
lemma α₃_proj (T : MSSMACC.Sols) : α₃ (proj T.1.1) =
6 * dot Y₃.val B₃.val ^ 3 * (
cubeTriLin T.val T.val Y₃.val * quadBiLin B₃.val T.val -
6 * dot Y₃.val B₃.val ^ 3 *
(cubeTriLin T.val T.val Y₃.val * quadBiLin B₃.val T.val -
cubeTriLin T.val T.val B₃.val * quadBiLin Y₃.val T.val) := by
rw [α₃]
rw [cube_proj_proj_Y₃, cube_proj_proj_B₃, quad_B₃_proj, quad_Y₃_proj]

View file

@ -253,8 +253,8 @@ def inLineEqProj (T : InLineEqSol) : InLineEq × × × :=
(⟨proj T.val.1.1, (linEqPropSol_iff_proj_linEqProp T.val).mp T.prop.1⟩,
(quadCoeff T.val)⁻¹ * quadBiLin B₃.val T.val.val,
(quadCoeff T.val)⁻¹ * (- quadBiLin Y₃.val T.val.val),
(quadCoeff T.val)⁻¹ * (
quadBiLin B₃.val T.val.val * (dot B₃.val T.val.val - dot Y₃.val T.val.val)
(quadCoeff T.val)⁻¹ *
(quadBiLin B₃.val T.val.val * (dot B₃.val T.val.val - dot Y₃.val T.val.val)
- quadBiLin Y₃.val T.val.val * (dot Y₃.val T.val.val - 2 * dot B₃.val T.val.val)))
lemma inLineEqTo_smul (R : InLineEq) (c₁ c₂ c₃ d : ) :

View file

@ -307,8 +307,8 @@ lemma Prop_two (P : × → Prop) {S : (PureU1 n).LinSols}
lemma Prop_three (P : × × → Prop) {S : (PureU1 n).LinSols}
{a b c : Fin n} (hab : a ≠ b) (hac : a ≠ c) (hbc : b ≠ c)
(h : ∀ (f : (FamilyPermutations n).group),
P ((((FamilyPermutations n).linSolRep f S).val a),(
(((FamilyPermutations n).linSolRep f S).val b),
P ((((FamilyPermutations n).linSolRep f S).val a),
((((FamilyPermutations n).linSolRep f S).val b),
(((FamilyPermutations n).linSolRep f S).val c)))) : ∀ (i j k : Fin n)
(_ : i ≠ j) (_ : j ≠ k) (_ : i ≠ k), P (S.val i, (S.val j, S.val k)) := by
intro i j k hij hjk hik