refactor: Text based Lint

This commit is contained in:
jstoobysmith 2024-10-29 11:23:08 +00:00
parent 319089ad54
commit 7010a1dae2
12 changed files with 54 additions and 52 deletions

View file

@ -209,10 +209,10 @@ lemma basis_contr (c : complexLorentzTensor.C) (i : Fin (complexLorentzTensor.re
| Color.up => Lorentz.contrCoContraction_basis _ _
| Color.down => Lorentz.coContrContraction_basis _ _
instance {n : } {c : Fin n → complexLorentzTensor.C} :
instance {n : } {c : Fin n → complexLorentzTensor.C} :
DecidableEq (OverColor.mk c).left := instDecidableEqFin n
instance {n : } {c : Fin n → complexLorentzTensor.C} :
instance {n : } {c : Fin n → complexLorentzTensor.C} :
Fintype (OverColor.mk c).left := Fin.fintype n
instance {n m : } {c : Fin n → complexLorentzTensor.C}
@ -220,6 +220,5 @@ instance {n m : } {c : Fin n → complexLorentzTensor.C}
Decidable (σ = σ') :=
decidable_of_iff _ (OverColor.Hom.ext_iff σ σ')
end complexLorentzTensor
end

View file

@ -76,7 +76,7 @@ lemma tensorNode_contrBispinorDown (p : complexContr) :
rw [contrBispinorDown, tensorNode_tensor]
/-- The definitional tensor node relation for `coBispinorUp`. -/
lemma tensorNode_coBispinorUp (p : complexCo) :
lemma tensorNode_coBispinorUp (p : complexCo) :
{coBispinorUp p | α β}ᵀ.tensor = {pauliContr | μ α β ⊗ p | μ}ᵀ.tensor := by
rw [coBispinorUp, tensorNode_tensor]
@ -94,23 +94,26 @@ lemma tensorNode_coBispinorDown (p : complexCo) :
-/
lemma contrBispinorDown_expand (p : complexContr) :
{contrBispinorDown p | α β}ᵀ.tensor = {Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
{contrBispinorDown p | α β}ᵀ.tensor =
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
(pauliCo | μ α β ⊗ p | μ)}ᵀ.tensor := by
rw [tensorNode_contrBispinorDown p]
rw [contr_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_snd <| tensorNode_contrBispinorUp p]
lemma coBispinorDown_expand (p : complexCo) :
{coBispinorDown p | α β}ᵀ.tensor = {Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
{coBispinorDown p | α β}ᵀ.tensor =
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
(pauliContr | μ α β ⊗ p | μ)}ᵀ.tensor := by
rw [tensorNode_coBispinorDown p]
rw [contr_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_snd <| tensorNode_coBispinorUp p]
set_option maxRecDepth 5000 in
lemma contrBispinorDown_eq_pauliCoDown_contr (p : complexContr) :
{contrBispinorDown p | α β = pauliCoDown | μ α β ⊗ p | μ}ᵀ := by
{contrBispinorDown p | α β = pauliCoDown | μ α β ⊗ p | μ}ᵀ := by
conv =>
rhs
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <| pauliCoDown_eq_metric_mul_pauliCo]
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <|
pauliCoDown_eq_metric_mul_pauliCo]
rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_left _ _ _ _]
rw [perm_tensor_eq <| perm_contr_congr 2 2]
rw [perm_perm]
@ -118,12 +121,14 @@ lemma contrBispinorDown_eq_pauliCoDown_contr (p : complexContr) :
rw [perm_tensor_eq <| perm_contr_congr 2 2]
rw [perm_perm]
apply (perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _).trans
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr_congr 1 3]
rw [perm_tensor_eq <| perm_contr_congr 2 2]
rw [perm_perm]
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_assoc' _ _ _ _ _ _]
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <|
perm_eq_id _ rfl _]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <|
prod_assoc' _ _ _ _ _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_contr_congr 0 4]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr_congr 1 3]
rw [perm_tensor_eq <| perm_contr_congr 2 2]
@ -144,10 +149,11 @@ lemma contrBispinorDown_eq_pauliCoDown_contr (p : complexContr) :
set_option maxRecDepth 5000 in
lemma coBispinorDown_eq_pauliContrDown_contr (p : complexCo) :
{coBispinorDown p | α β = pauliContrDown | μ α β ⊗ p | μ}ᵀ := by
{coBispinorDown p | α β = pauliContrDown | μ α β ⊗ p | μ}ᵀs := by
conv =>
rhs
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <| pauliContrDown_eq_metric_mul_pauliContr]
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <|
pauliContrDown_eq_metric_mul_pauliContr]
rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_left _ _ _ _]
rw [perm_tensor_eq <| perm_contr_congr 2 2]
rw [perm_perm]
@ -155,12 +161,14 @@ lemma coBispinorDown_eq_pauliContrDown_contr (p : complexCo) :
rw [perm_tensor_eq <| perm_contr_congr 2 2]
rw [perm_perm]
apply (perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _).trans
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr_congr 1 3]
rw [perm_tensor_eq <| perm_contr_congr 2 2]
rw [perm_perm]
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_assoc' _ _ _ _ _ _]
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <|
perm_eq_id _ rfl _]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <|
prod_assoc' _ _ _ _ _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_contr_congr 0 4]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr_congr 1 3]
rw [perm_tensor_eq <| perm_contr_congr 2 2]

View file

@ -63,7 +63,7 @@ lemma tensorNode_pauliContr : {pauliContr | μ α β}ᵀ.tensor =
rfl
/-- The definitional tensor node relation for `pauliCo`. -/
lemma tensorNode_pauliCo : {pauliCo | μ α β}ᵀ.tensor =
lemma tensorNode_pauliCo : {pauliCo | μ α β}ᵀ.tensor =
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | ν α β}ᵀ.tensor := by
rfl
@ -111,7 +111,7 @@ lemma pauliCoDown_eq_metric_mul_pauliCo :
rw [perm_perm]
rw [perm_tensor_eq <| contr_congr 1 2]
rw [perm_perm]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_comm _ _ _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_comm _ _ _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_tensor_eq <| contr_congr 5 0]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_perm _ _ _]
@ -138,7 +138,7 @@ lemma pauliCoDown_eq_metric_mul_pauliCo :
set_option maxRecDepth 5000 in
/-- A rearanging of `pauliContrDown` to place the pauli matrices on the right. -/
lemma pauliContrDown_eq_metric_mul_pauliContr :
{pauliContrDown | μ α' β' = Fermion.altLeftMetric | α α' ⊗
{pauliContrDown | μ α' β' = Fermion.altLeftMetric | α α' ⊗
Fermion.altRightMetric | β β' ⊗ pauliContr | μ α β}ᵀ := by
conv =>
lhs
@ -161,7 +161,7 @@ lemma pauliContrDown_eq_metric_mul_pauliContr :
rw [perm_perm]
rw [perm_tensor_eq <| contr_congr 1 2]
rw [perm_perm]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_comm _ _ _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_comm _ _ _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_tensor_eq <| contr_congr 5 0]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_perm _ _ _]

View file

@ -26,7 +26,6 @@ noncomputable section
namespace complexLorentzTensor
open Fermion
/-!
## Expanding pauliContr in a basis.
@ -94,7 +93,6 @@ lemma pauliContr_basis_expand_tree : {pauliContr | μ α β}ᵀ.tensor =
smul_tensor, neg_smul, one_smul]
rfl
/-- The map to colors one gets when contracting with Pauli matrices on the right. -/
abbrev pauliMatrixContrMap {n : } (c : Fin n → complexLorentzTensor.C) :=
(Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm)
@ -325,14 +323,12 @@ lemma basis_contr_pauliMatrix_basis_tree_expand_tensor {n : } {c : Fin n →
simp_all only [Function.comp_apply, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue]
rfl
/-!
## Expanding pauliCo in a basis.
-/
/-- The map to color one gets when lowering the indices of pauli matrices. -/
def pauliCoMap := ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘
⇑finSumFinEquiv.symm) ∘ Fin.succAbove 1 ∘ Fin.succAbove 1)