refactor: Text based Lint
This commit is contained in:
parent
319089ad54
commit
7010a1dae2
12 changed files with 54 additions and 52 deletions
|
@ -209,10 +209,10 @@ lemma basis_contr (c : complexLorentzTensor.C) (i : Fin (complexLorentzTensor.re
|
|||
| Color.up => Lorentz.contrCoContraction_basis _ _
|
||||
| Color.down => Lorentz.coContrContraction_basis _ _
|
||||
|
||||
instance {n : ℕ} {c : Fin n → complexLorentzTensor.C} :
|
||||
instance {n : ℕ} {c : Fin n → complexLorentzTensor.C} :
|
||||
DecidableEq (OverColor.mk c).left := instDecidableEqFin n
|
||||
|
||||
instance {n : ℕ} {c : Fin n → complexLorentzTensor.C} :
|
||||
instance {n : ℕ} {c : Fin n → complexLorentzTensor.C} :
|
||||
Fintype (OverColor.mk c).left := Fin.fintype n
|
||||
|
||||
instance {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||
|
@ -220,6 +220,5 @@ instance {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
|
|||
Decidable (σ = σ') :=
|
||||
decidable_of_iff _ (OverColor.Hom.ext_iff σ σ')
|
||||
|
||||
|
||||
end complexLorentzTensor
|
||||
end
|
||||
|
|
|
@ -76,7 +76,7 @@ lemma tensorNode_contrBispinorDown (p : complexContr) :
|
|||
rw [contrBispinorDown, tensorNode_tensor]
|
||||
|
||||
/-- The definitional tensor node relation for `coBispinorUp`. -/
|
||||
lemma tensorNode_coBispinorUp (p : complexCo) :
|
||||
lemma tensorNode_coBispinorUp (p : complexCo) :
|
||||
{coBispinorUp p | α β}ᵀ.tensor = {pauliContr | μ α β ⊗ p | μ}ᵀ.tensor := by
|
||||
rw [coBispinorUp, tensorNode_tensor]
|
||||
|
||||
|
@ -94,23 +94,26 @@ lemma tensorNode_coBispinorDown (p : complexCo) :
|
|||
-/
|
||||
|
||||
lemma contrBispinorDown_expand (p : complexContr) :
|
||||
{contrBispinorDown p | α β}ᵀ.tensor = {Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
|
||||
{contrBispinorDown p | α β}ᵀ.tensor =
|
||||
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
|
||||
(pauliCo | μ α β ⊗ p | μ)}ᵀ.tensor := by
|
||||
rw [tensorNode_contrBispinorDown p]
|
||||
rw [contr_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_snd <| tensorNode_contrBispinorUp p]
|
||||
|
||||
lemma coBispinorDown_expand (p : complexCo) :
|
||||
{coBispinorDown p | α β}ᵀ.tensor = {Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
|
||||
{coBispinorDown p | α β}ᵀ.tensor =
|
||||
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
|
||||
(pauliContr | μ α β ⊗ p | μ)}ᵀ.tensor := by
|
||||
rw [tensorNode_coBispinorDown p]
|
||||
rw [contr_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_snd <| tensorNode_coBispinorUp p]
|
||||
|
||||
set_option maxRecDepth 5000 in
|
||||
lemma contrBispinorDown_eq_pauliCoDown_contr (p : complexContr) :
|
||||
{contrBispinorDown p | α β = pauliCoDown | μ α β ⊗ p | μ}ᵀ := by
|
||||
{contrBispinorDown p | α β = pauliCoDown | μ α β ⊗ p | μ}ᵀ := by
|
||||
conv =>
|
||||
rhs
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <| pauliCoDown_eq_metric_mul_pauliCo]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <|
|
||||
pauliCoDown_eq_metric_mul_pauliCo]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_left _ _ _ _]
|
||||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||||
rw [perm_perm]
|
||||
|
@ -118,12 +121,14 @@ lemma contrBispinorDown_eq_pauliCoDown_contr (p : complexContr) :
|
|||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||||
rw [perm_perm]
|
||||
apply (perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _).trans
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr_congr 1 3]
|
||||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||||
rw [perm_perm]
|
||||
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_assoc' _ _ _ _ _ _]
|
||||
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <|
|
||||
perm_eq_id _ rfl _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <|
|
||||
prod_assoc' _ _ _ _ _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_contr_congr 0 4]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr_congr 1 3]
|
||||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||||
|
@ -144,10 +149,11 @@ lemma contrBispinorDown_eq_pauliCoDown_contr (p : complexContr) :
|
|||
|
||||
set_option maxRecDepth 5000 in
|
||||
lemma coBispinorDown_eq_pauliContrDown_contr (p : complexCo) :
|
||||
{coBispinorDown p | α β = pauliContrDown | μ α β ⊗ p | μ}ᵀ := by
|
||||
{coBispinorDown p | α β = pauliContrDown | μ α β ⊗ p | μ}ᵀs := by
|
||||
conv =>
|
||||
rhs
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <| pauliContrDown_eq_metric_mul_pauliContr]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <|
|
||||
pauliContrDown_eq_metric_mul_pauliContr]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_left _ _ _ _]
|
||||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||||
rw [perm_perm]
|
||||
|
@ -155,12 +161,14 @@ lemma coBispinorDown_eq_pauliContrDown_contr (p : complexCo) :
|
|||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||||
rw [perm_perm]
|
||||
apply (perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _).trans
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr_congr 1 3]
|
||||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||||
rw [perm_perm]
|
||||
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_assoc' _ _ _ _ _ _]
|
||||
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <|
|
||||
perm_eq_id _ rfl _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <|
|
||||
prod_assoc' _ _ _ _ _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_contr_congr 0 4]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr_congr 1 3]
|
||||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||||
|
|
|
@ -63,7 +63,7 @@ lemma tensorNode_pauliContr : {pauliContr | μ α β}ᵀ.tensor =
|
|||
rfl
|
||||
|
||||
/-- The definitional tensor node relation for `pauliCo`. -/
|
||||
lemma tensorNode_pauliCo : {pauliCo | μ α β}ᵀ.tensor =
|
||||
lemma tensorNode_pauliCo : {pauliCo | μ α β}ᵀ.tensor =
|
||||
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | ν α β}ᵀ.tensor := by
|
||||
rfl
|
||||
|
||||
|
@ -111,7 +111,7 @@ lemma pauliCoDown_eq_metric_mul_pauliCo :
|
|||
rw [perm_perm]
|
||||
rw [perm_tensor_eq <| contr_congr 1 2]
|
||||
rw [perm_perm]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_comm _ _ _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_comm _ _ _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_tensor_eq <| contr_congr 5 0]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_perm _ _ _]
|
||||
|
@ -138,7 +138,7 @@ lemma pauliCoDown_eq_metric_mul_pauliCo :
|
|||
set_option maxRecDepth 5000 in
|
||||
/-- A rearanging of `pauliContrDown` to place the pauli matrices on the right. -/
|
||||
lemma pauliContrDown_eq_metric_mul_pauliContr :
|
||||
{pauliContrDown | μ α' β' = Fermion.altLeftMetric | α α' ⊗
|
||||
{pauliContrDown | μ α' β' = Fermion.altLeftMetric | α α' ⊗
|
||||
Fermion.altRightMetric | β β' ⊗ pauliContr | μ α β}ᵀ := by
|
||||
conv =>
|
||||
lhs
|
||||
|
@ -161,7 +161,7 @@ lemma pauliContrDown_eq_metric_mul_pauliContr :
|
|||
rw [perm_perm]
|
||||
rw [perm_tensor_eq <| contr_congr 1 2]
|
||||
rw [perm_perm]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_comm _ _ _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_comm _ _ _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_tensor_eq <| contr_congr 5 0]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_perm _ _ _]
|
||||
|
|
|
@ -26,7 +26,6 @@ noncomputable section
|
|||
namespace complexLorentzTensor
|
||||
open Fermion
|
||||
|
||||
|
||||
/-!
|
||||
|
||||
## Expanding pauliContr in a basis.
|
||||
|
@ -94,7 +93,6 @@ lemma pauliContr_basis_expand_tree : {pauliContr | μ α β}ᵀ.tensor =
|
|||
smul_tensor, neg_smul, one_smul]
|
||||
rfl
|
||||
|
||||
|
||||
/-- The map to colors one gets when contracting with Pauli matrices on the right. -/
|
||||
abbrev pauliMatrixContrMap {n : ℕ} (c : Fin n → complexLorentzTensor.C) :=
|
||||
(Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm)
|
||||
|
@ -325,14 +323,12 @@ lemma basis_contr_pauliMatrix_basis_tree_expand_tensor {n : ℕ} {c : Fin n →
|
|||
simp_all only [Function.comp_apply, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue]
|
||||
rfl
|
||||
|
||||
|
||||
/-!
|
||||
|
||||
## Expanding pauliCo in a basis.
|
||||
|
||||
-/
|
||||
|
||||
|
||||
/-- The map to color one gets when lowering the indices of pauli matrices. -/
|
||||
def pauliCoMap := ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘
|
||||
⇑finSumFinEquiv.symm) ∘ Fin.succAbove 1 ∘ Fin.succAbove 1)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue