refactor: Text based Lint
This commit is contained in:
parent
319089ad54
commit
7010a1dae2
12 changed files with 54 additions and 52 deletions
|
@ -76,7 +76,7 @@ lemma tensorNode_contrBispinorDown (p : complexContr) :
|
|||
rw [contrBispinorDown, tensorNode_tensor]
|
||||
|
||||
/-- The definitional tensor node relation for `coBispinorUp`. -/
|
||||
lemma tensorNode_coBispinorUp (p : complexCo) :
|
||||
lemma tensorNode_coBispinorUp (p : complexCo) :
|
||||
{coBispinorUp p | α β}ᵀ.tensor = {pauliContr | μ α β ⊗ p | μ}ᵀ.tensor := by
|
||||
rw [coBispinorUp, tensorNode_tensor]
|
||||
|
||||
|
@ -94,23 +94,26 @@ lemma tensorNode_coBispinorDown (p : complexCo) :
|
|||
-/
|
||||
|
||||
lemma contrBispinorDown_expand (p : complexContr) :
|
||||
{contrBispinorDown p | α β}ᵀ.tensor = {Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
|
||||
{contrBispinorDown p | α β}ᵀ.tensor =
|
||||
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
|
||||
(pauliCo | μ α β ⊗ p | μ)}ᵀ.tensor := by
|
||||
rw [tensorNode_contrBispinorDown p]
|
||||
rw [contr_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_snd <| tensorNode_contrBispinorUp p]
|
||||
|
||||
lemma coBispinorDown_expand (p : complexCo) :
|
||||
{coBispinorDown p | α β}ᵀ.tensor = {Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
|
||||
{coBispinorDown p | α β}ᵀ.tensor =
|
||||
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
|
||||
(pauliContr | μ α β ⊗ p | μ)}ᵀ.tensor := by
|
||||
rw [tensorNode_coBispinorDown p]
|
||||
rw [contr_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_snd <| tensorNode_coBispinorUp p]
|
||||
|
||||
set_option maxRecDepth 5000 in
|
||||
lemma contrBispinorDown_eq_pauliCoDown_contr (p : complexContr) :
|
||||
{contrBispinorDown p | α β = pauliCoDown | μ α β ⊗ p | μ}ᵀ := by
|
||||
{contrBispinorDown p | α β = pauliCoDown | μ α β ⊗ p | μ}ᵀ := by
|
||||
conv =>
|
||||
rhs
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <| pauliCoDown_eq_metric_mul_pauliCo]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <|
|
||||
pauliCoDown_eq_metric_mul_pauliCo]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_left _ _ _ _]
|
||||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||||
rw [perm_perm]
|
||||
|
@ -118,12 +121,14 @@ lemma contrBispinorDown_eq_pauliCoDown_contr (p : complexContr) :
|
|||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||||
rw [perm_perm]
|
||||
apply (perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _).trans
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr_congr 1 3]
|
||||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||||
rw [perm_perm]
|
||||
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_assoc' _ _ _ _ _ _]
|
||||
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <|
|
||||
perm_eq_id _ rfl _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <|
|
||||
prod_assoc' _ _ _ _ _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_contr_congr 0 4]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr_congr 1 3]
|
||||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||||
|
@ -144,10 +149,11 @@ lemma contrBispinorDown_eq_pauliCoDown_contr (p : complexContr) :
|
|||
|
||||
set_option maxRecDepth 5000 in
|
||||
lemma coBispinorDown_eq_pauliContrDown_contr (p : complexCo) :
|
||||
{coBispinorDown p | α β = pauliContrDown | μ α β ⊗ p | μ}ᵀ := by
|
||||
{coBispinorDown p | α β = pauliContrDown | μ α β ⊗ p | μ}ᵀs := by
|
||||
conv =>
|
||||
rhs
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <| pauliContrDown_eq_metric_mul_pauliContr]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <|
|
||||
pauliContrDown_eq_metric_mul_pauliContr]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_left _ _ _ _]
|
||||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||||
rw [perm_perm]
|
||||
|
@ -155,12 +161,14 @@ lemma coBispinorDown_eq_pauliContrDown_contr (p : complexCo) :
|
|||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||||
rw [perm_perm]
|
||||
apply (perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _).trans
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr_congr 1 3]
|
||||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||||
rw [perm_perm]
|
||||
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_assoc' _ _ _ _ _ _]
|
||||
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <|
|
||||
perm_eq_id _ rfl _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <|
|
||||
prod_assoc' _ _ _ _ _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_contr_congr 0 4]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr_congr 1 3]
|
||||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue