refactor: Text based Lint

This commit is contained in:
jstoobysmith 2024-10-29 11:23:08 +00:00
parent 319089ad54
commit 7010a1dae2
12 changed files with 54 additions and 52 deletions

View file

@ -76,7 +76,7 @@ lemma tensorNode_contrBispinorDown (p : complexContr) :
rw [contrBispinorDown, tensorNode_tensor]
/-- The definitional tensor node relation for `coBispinorUp`. -/
lemma tensorNode_coBispinorUp (p : complexCo) :
lemma tensorNode_coBispinorUp (p : complexCo) :
{coBispinorUp p | α β}ᵀ.tensor = {pauliContr | μ α β ⊗ p | μ}ᵀ.tensor := by
rw [coBispinorUp, tensorNode_tensor]
@ -94,23 +94,26 @@ lemma tensorNode_coBispinorDown (p : complexCo) :
-/
lemma contrBispinorDown_expand (p : complexContr) :
{contrBispinorDown p | α β}ᵀ.tensor = {Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
{contrBispinorDown p | α β}ᵀ.tensor =
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
(pauliCo | μ α β ⊗ p | μ)}ᵀ.tensor := by
rw [tensorNode_contrBispinorDown p]
rw [contr_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_snd <| tensorNode_contrBispinorUp p]
lemma coBispinorDown_expand (p : complexCo) :
{coBispinorDown p | α β}ᵀ.tensor = {Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
{coBispinorDown p | α β}ᵀ.tensor =
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
(pauliContr | μ α β ⊗ p | μ)}ᵀ.tensor := by
rw [tensorNode_coBispinorDown p]
rw [contr_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_snd <| tensorNode_coBispinorUp p]
set_option maxRecDepth 5000 in
lemma contrBispinorDown_eq_pauliCoDown_contr (p : complexContr) :
{contrBispinorDown p | α β = pauliCoDown | μ α β ⊗ p | μ}ᵀ := by
{contrBispinorDown p | α β = pauliCoDown | μ α β ⊗ p | μ}ᵀ := by
conv =>
rhs
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <| pauliCoDown_eq_metric_mul_pauliCo]
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <|
pauliCoDown_eq_metric_mul_pauliCo]
rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_left _ _ _ _]
rw [perm_tensor_eq <| perm_contr_congr 2 2]
rw [perm_perm]
@ -118,12 +121,14 @@ lemma contrBispinorDown_eq_pauliCoDown_contr (p : complexContr) :
rw [perm_tensor_eq <| perm_contr_congr 2 2]
rw [perm_perm]
apply (perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _).trans
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr_congr 1 3]
rw [perm_tensor_eq <| perm_contr_congr 2 2]
rw [perm_perm]
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_assoc' _ _ _ _ _ _]
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <|
perm_eq_id _ rfl _]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <|
prod_assoc' _ _ _ _ _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_contr_congr 0 4]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr_congr 1 3]
rw [perm_tensor_eq <| perm_contr_congr 2 2]
@ -144,10 +149,11 @@ lemma contrBispinorDown_eq_pauliCoDown_contr (p : complexContr) :
set_option maxRecDepth 5000 in
lemma coBispinorDown_eq_pauliContrDown_contr (p : complexCo) :
{coBispinorDown p | α β = pauliContrDown | μ α β ⊗ p | μ}ᵀ := by
{coBispinorDown p | α β = pauliContrDown | μ α β ⊗ p | μ}ᵀs := by
conv =>
rhs
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <| pauliContrDown_eq_metric_mul_pauliContr]
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <|
pauliContrDown_eq_metric_mul_pauliContr]
rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_left _ _ _ _]
rw [perm_tensor_eq <| perm_contr_congr 2 2]
rw [perm_perm]
@ -155,12 +161,14 @@ lemma coBispinorDown_eq_pauliContrDown_contr (p : complexCo) :
rw [perm_tensor_eq <| perm_contr_congr 2 2]
rw [perm_perm]
apply (perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _).trans
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr_congr 1 3]
rw [perm_tensor_eq <| perm_contr_congr 2 2]
rw [perm_perm]
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_assoc' _ _ _ _ _ _]
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <|
perm_eq_id _ rfl _]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <|
prod_assoc' _ _ _ _ _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_contr_congr 0 4]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr_congr 1 3]
rw [perm_tensor_eq <| perm_contr_congr 2 2]