refactor: free simps
This commit is contained in:
parent
9184f6087c
commit
7026d8ce66
7 changed files with 150 additions and 146 deletions
|
@ -41,9 +41,9 @@ lemma auxCongr_ext {φs: List 𝓕} {c c2 : Contractions φs} (h : c.1 = c2.1)
|
|||
(hx : c.2 = auxCongr h.symm c2.2) : c = c2 := by
|
||||
cases c
|
||||
cases c2
|
||||
simp at h
|
||||
simp only at h
|
||||
subst h
|
||||
simp [auxCongr] at hx
|
||||
simp only [auxCongr, Equiv.refl_apply] at hx
|
||||
subst hx
|
||||
rfl
|
||||
|
||||
|
@ -97,11 +97,11 @@ lemma embedUncontracted_injective {l : List 𝓕} (c : Contractions l) :
|
|||
Function.Injective c.embedUncontracted := by
|
||||
match l, c with
|
||||
| [], ⟨[], ContractionsAux.nil⟩ =>
|
||||
dsimp [embedUncontracted]
|
||||
dsimp only [List.length_nil, embedUncontracted]
|
||||
intro i
|
||||
exact Fin.elim0 i
|
||||
| φ :: φs, ⟨_, .cons (φsᵤₙ := aux) none c⟩ =>
|
||||
dsimp [embedUncontracted]
|
||||
dsimp only [List.length_cons, embedUncontracted, Fin.zero_eta]
|
||||
refine Fin.cons_injective_iff.mpr ?_
|
||||
apply And.intro
|
||||
· simp only [Set.mem_range, Function.comp_apply, not_exists]
|
||||
|
@ -109,7 +109,7 @@ lemma embedUncontracted_injective {l : List 𝓕} (c : Contractions l) :
|
|||
· exact Function.Injective.comp (Fin.succ_injective φs.length)
|
||||
(embedUncontracted_injective ⟨aux, c⟩)
|
||||
| φ :: φs, ⟨_, .cons (φsᵤₙ := aux) (some i) c⟩ =>
|
||||
dsimp [embedUncontracted]
|
||||
dsimp only [List.length_cons, embedUncontracted]
|
||||
refine Function.Injective.comp (Fin.succ_injective φs.length) ?hf
|
||||
refine Function.Injective.comp (embedUncontracted_injective ⟨aux, c⟩) ?hf.hf
|
||||
refine Function.Injective.comp (Fin.cast_injective (embedUncontracted.proof_5 φ φs aux i c))
|
||||
|
@ -251,7 +251,7 @@ lemma toCenterTerm_none (f : 𝓕 → Type) [∀ i, Fintype (f i)]
|
|||
toCenterTerm f q le F c S := by
|
||||
rw [consEquiv]
|
||||
simp only [Equiv.coe_fn_symm_mk]
|
||||
dsimp [toCenterTerm]
|
||||
dsimp only [toCenterTerm]
|
||||
rfl
|
||||
|
||||
/-- Proves that the part of the term gained from Wick contractions is in
|
||||
|
@ -264,13 +264,13 @@ lemma toCenterTerm_center (f : 𝓕 → Type) [∀ i, Fintype (f i)]
|
|||
{φs : List 𝓕} → (c : Contractions φs) → (S : Splitting f le) →
|
||||
(c.toCenterTerm f q le F S) ∈ Subalgebra.center ℂ A
|
||||
| [], ⟨[], .nil⟩, _ => by
|
||||
dsimp [toCenterTerm]
|
||||
dsimp only [toCenterTerm]
|
||||
exact Subalgebra.one_mem (Subalgebra.center ℂ A)
|
||||
| _ :: _, ⟨_, .cons (φsᵤₙ := aux') none c⟩, S => by
|
||||
dsimp [toCenterTerm]
|
||||
dsimp only [toCenterTerm]
|
||||
exact toCenterTerm_center f q le F ⟨aux', c⟩ S
|
||||
| a :: _, ⟨_, .cons (φsᵤₙ := aux') (some n) c⟩, S => by
|
||||
dsimp [toCenterTerm]
|
||||
dsimp only [toCenterTerm, List.get_eq_getElem]
|
||||
refine Subalgebra.mul_mem (Subalgebra.center ℂ A) ?hx ?hy
|
||||
exact toCenterTerm_center f q le F ⟨aux', c⟩ S
|
||||
apply Subalgebra.smul_mem
|
||||
|
|
|
@ -31,7 +31,7 @@ lemma card_of_full_contractions_odd {φs : List 𝓕} (ho : Odd φs.length ) :
|
|||
by_contra hn
|
||||
have hc := uncontracted_length_even_iff c
|
||||
rw [hn] at hc
|
||||
simp at hc
|
||||
simp only [List.length_nil, even_zero, iff_true] at hc
|
||||
rw [← Nat.not_odd_iff_even] at hc
|
||||
exact hc ho
|
||||
|
||||
|
|
|
@ -36,6 +36,8 @@ variable {l : List 𝓕}
|
|||
|
||||
-/
|
||||
|
||||
/-- Given an involution the uncontracted fields associated with it (corresponding
|
||||
to the fixed points of that involution). -/
|
||||
def uncontractedFromInvolution : {φs : List 𝓕} →
|
||||
(f : {f : Fin φs.length → Fin φs.length // Function.Involutive f}) →
|
||||
{l : List 𝓕 // l.length = (Finset.univ.filter fun i => f.1 i = i).card}
|
||||
|
@ -43,10 +45,11 @@ def uncontractedFromInvolution : {φs : List 𝓕} →
|
|||
| φ :: φs, f =>
|
||||
let luc := uncontractedFromInvolution (involutionCons φs.length f).fst
|
||||
let n' := involutionAddEquiv (involutionCons φs.length f).1 (involutionCons φs.length f).2
|
||||
let np : Option (Fin luc.1.length) := Option.map (finCongr luc.2.symm) n'
|
||||
if hn : n' = none then
|
||||
have hn' := involutionAddEquiv_none_image_zero (n := φs.length) (f := f) hn
|
||||
⟨optionEraseZ luc φ none, by
|
||||
simp [optionEraseZ]
|
||||
simp only [optionEraseZ, Nat.succ_eq_add_one, List.length_cons, Mathlib.Vector.length_val]
|
||||
rw [← luc.2]
|
||||
conv_rhs => rw [Finset.card_filter]
|
||||
rw [Fin.sum_univ_succ]
|
||||
|
@ -61,13 +64,13 @@ def uncontractedFromInvolution : {φs : List 𝓕} →
|
|||
rw [involutionAddEquiv_none_succ hn]⟩
|
||||
else
|
||||
let n := n'.get (Option.isSome_iff_ne_none.mpr hn)
|
||||
let np : Fin luc.1.length := ⟨n.1, by
|
||||
rw [luc.2]
|
||||
exact n.prop⟩
|
||||
let np : Fin luc.1.length := Fin.cast luc.2.symm n
|
||||
⟨optionEraseZ luc φ (some np), by
|
||||
let k' := (involutionCons φs.length f).2
|
||||
have hkIsSome : (k'.1).isSome := by
|
||||
simp [n', involutionAddEquiv ] at hn
|
||||
simp only [Nat.succ_eq_add_one, involutionAddEquiv, Option.isSome_some, Option.get_some,
|
||||
Option.isSome_none, Equiv.trans_apply, Equiv.coe_fn_mk, Equiv.optionCongr_apply,
|
||||
Equiv.coe_trans, RelIso.coe_fn_toEquiv, Option.map_eq_none', n'] at hn
|
||||
split at hn
|
||||
· simp_all only [reduceCtorEq, not_false_eq_true, Nat.succ_eq_add_one, Option.isSome_some, k']
|
||||
· simp_all only [not_true_eq_false]
|
||||
|
@ -76,39 +79,34 @@ def uncontractedFromInvolution : {φs : List 𝓕} →
|
|||
have hksucc : k.succ = f.1 ⟨0, Nat.zero_lt_succ φs.length⟩ := by
|
||||
simp [k, k', involutionCons]
|
||||
have hzero : ⟨0, Nat.zero_lt_succ φs.length⟩ = f.1 k.succ := by
|
||||
rw [hksucc]
|
||||
rw [f.2]
|
||||
have hkcons : ((involutionCons φs.length) f).1.1 k = k := by
|
||||
exact k'.2 hkIsSome
|
||||
rw [hksucc, f.2]
|
||||
have hksuccNe : f.1 k.succ ≠ k.succ := by
|
||||
conv_rhs => rw [hksucc]
|
||||
exact fun hn => Fin.succ_ne_zero k (Function.Involutive.injective f.2 hn )
|
||||
have hluc : 1 ≤ luc.1.length := by
|
||||
simp
|
||||
simp only [Nat.succ_eq_add_one, Mathlib.Vector.length_val, Finset.one_le_card]
|
||||
use k
|
||||
simp [involutionCons]
|
||||
simp only [involutionCons, Nat.succ_eq_add_one, Fin.cons_update, Equiv.coe_fn_mk,
|
||||
dite_eq_left_iff, Finset.mem_filter, Finset.mem_univ, true_and]
|
||||
rw [hksucc, f.2]
|
||||
simp
|
||||
rw [propext (Nat.sub_eq_iff_eq_add' hluc)]
|
||||
have h0 : ¬ f.1 ⟨0, Nat.zero_lt_succ φs.length⟩ = ⟨0, Nat.zero_lt_succ φs.length⟩ := by
|
||||
exact Option.isSome_dite'.mp hkIsSome
|
||||
conv_rhs =>
|
||||
rw [Finset.card_filter]
|
||||
erw [Fin.sum_univ_succ]
|
||||
erw [if_neg h0]
|
||||
erw [Fin.sum_univ_succ, if_neg (Option.isSome_dite'.mp hkIsSome)]
|
||||
simp only [Nat.succ_eq_add_one, Mathlib.Vector.length_val, List.length_cons,
|
||||
Nat.cast_id, zero_add]
|
||||
conv_rhs => lhs; rw [Eq.symm (Fintype.sum_ite_eq' k fun j => 1)]
|
||||
rw [← Finset.sum_add_distrib]
|
||||
rw [Finset.card_filter]
|
||||
rw [← Finset.sum_add_distrib, Finset.card_filter]
|
||||
apply congrArg
|
||||
funext i
|
||||
by_cases hik : i = k
|
||||
· subst hik
|
||||
simp [hkcons, hksuccNe]
|
||||
· simp [hik]
|
||||
simp only [k'.2 hkIsSome, Nat.succ_eq_add_one, ↓reduceIte, hksuccNe, add_zero]
|
||||
· simp only [hik, ↓reduceIte, zero_add]
|
||||
refine ite_congr ?_ (congrFun rfl) (congrFun rfl)
|
||||
simp [involutionCons]
|
||||
simp only [involutionCons, Nat.succ_eq_add_one, Fin.cons_update, Equiv.coe_fn_mk,
|
||||
dite_eq_left_iff, eq_iff_iff]
|
||||
have hfi : f.1 i.succ ≠ ⟨0, Nat.zero_lt_succ φs.length⟩ := by
|
||||
rw [hzero]
|
||||
by_contra hn
|
||||
|
@ -121,7 +119,7 @@ def uncontractedFromInvolution : {φs : List 𝓕} →
|
|||
conv_rhs => rw [← h']
|
||||
simp
|
||||
· intro h hfi
|
||||
simp [Fin.ext_iff]
|
||||
simp only [Fin.ext_iff, Fin.coe_pred]
|
||||
rw [h]
|
||||
simp⟩
|
||||
|
||||
|
@ -135,18 +133,17 @@ lemma uncontractedFromInvolution_cons {φs : List 𝓕} {φ : 𝓕}
|
|||
let n' := involutionAddEquiv (involutionCons φs.length f).1 (involutionCons φs.length f).2
|
||||
change _ = optionEraseZ luc φ
|
||||
(Option.map (finCongr ((uncontractedFromInvolution (involutionCons φs.length f).fst).2.symm)) n')
|
||||
dsimp [uncontractedFromInvolution]
|
||||
dsimp only [List.length_cons, uncontractedFromInvolution, Nat.succ_eq_add_one, Fin.zero_eta]
|
||||
by_cases hn : n' = none
|
||||
· have hn' := hn
|
||||
simp [n'] at hn'
|
||||
simp [hn']
|
||||
rw [hn]
|
||||
simp only [Nat.succ_eq_add_one, n'] at hn'
|
||||
simp only [hn', ↓reduceDIte, hn]
|
||||
rfl
|
||||
· have hn' := hn
|
||||
simp [n'] at hn'
|
||||
simp [hn']
|
||||
simp only [Nat.succ_eq_add_one, n'] at hn'
|
||||
simp only [hn', ↓reduceDIte]
|
||||
congr
|
||||
simp [n']
|
||||
simp only [Nat.succ_eq_add_one, n']
|
||||
simp_all only [Nat.succ_eq_add_one, not_false_eq_true, n', luc]
|
||||
obtain ⟨val, property⟩ := f
|
||||
obtain ⟨val_1, property_1⟩ := luc
|
||||
|
@ -166,10 +163,10 @@ lemma uncontractedFromInvolution_cons {φs : List 𝓕} {φ : 𝓕}
|
|||
obtain ⟨left, right⟩ := h
|
||||
subst right
|
||||
simp_all only [Option.get_some]
|
||||
rfl
|
||||
|
||||
/-- The `ContractionsAux` associated to an involution. -/
|
||||
def fromInvolutionAux : {l : List 𝓕} →
|
||||
(f : {f : Fin l.length → Fin l.length // Function.Involutive f}) →
|
||||
(f : {f : Fin l.length → Fin l.length // Function.Involutive f}) →
|
||||
ContractionsAux l (uncontractedFromInvolution f)
|
||||
| [] => fun _ => ContractionsAux.nil
|
||||
| _ :: φs => fun f =>
|
||||
|
@ -179,6 +176,7 @@ def fromInvolutionAux : {l : List 𝓕} →
|
|||
(involutionAddEquiv f'.1 f'.2)
|
||||
auxCongr (uncontractedFromInvolution_cons f).symm (ContractionsAux.cons n' c')
|
||||
|
||||
/-- The contraction associated with an involution. -/
|
||||
def fromInvolution {φs : List 𝓕} (f : {f : Fin φs.length → Fin φs.length // Function.Involutive f}) :
|
||||
Contractions φs := ⟨uncontractedFromInvolution f, fromInvolutionAux f⟩
|
||||
|
||||
|
@ -189,32 +187,31 @@ lemma fromInvolution_cons {φs : List 𝓕} {φ : 𝓕}
|
|||
⟨fromInvolution f'.1, Option.map (finCongr ((uncontractedFromInvolution f'.fst).2.symm))
|
||||
(involutionAddEquiv f'.1 f'.2)⟩ := by
|
||||
refine auxCongr_ext ?_ ?_
|
||||
· dsimp [fromInvolution]
|
||||
· dsimp only [fromInvolution, List.length_cons, Nat.succ_eq_add_one]
|
||||
rw [uncontractedFromInvolution_cons]
|
||||
rfl
|
||||
· dsimp [fromInvolution, fromInvolutionAux]
|
||||
· dsimp only [fromInvolution, List.length_cons, fromInvolutionAux, Nat.succ_eq_add_one, id_eq,
|
||||
eq_mpr_eq_cast]
|
||||
rfl
|
||||
|
||||
lemma fromInvolution_of_involutionCons
|
||||
{φs : List 𝓕} {φ : 𝓕}
|
||||
lemma fromInvolution_of_involutionCons {φs : List 𝓕} {φ : 𝓕}
|
||||
(f : {f : Fin (φs ).length → Fin (φs).length // Function.Involutive f})
|
||||
(n : { i : Option (Fin φs.length) // ∀ (h : i.isSome = true), f.1 (i.get h) = i.get h }):
|
||||
fromInvolution (φs := φ :: φs) ((involutionCons φs.length).symm ⟨f, n⟩) =
|
||||
consEquiv.symm
|
||||
⟨fromInvolution f, Option.map (finCongr ((uncontractedFromInvolution f).2.symm))
|
||||
consEquiv.symm ⟨fromInvolution f, Option.map (finCongr ((uncontractedFromInvolution f).2.symm))
|
||||
(involutionAddEquiv f n)⟩ := by
|
||||
rw [fromInvolution_cons]
|
||||
congr 1
|
||||
simp
|
||||
simp only [Nat.succ_eq_add_one, Sigma.mk.inj_iff, Equiv.apply_symm_apply, true_and]
|
||||
rw [Equiv.apply_symm_apply]
|
||||
|
||||
|
||||
/-!
|
||||
|
||||
## To Involution.
|
||||
|
||||
-/
|
||||
|
||||
/-- The involution associated with a contraction. -/
|
||||
def toInvolution : {φs : List 𝓕} → (c : Contractions φs) →
|
||||
{f : {f : Fin φs.length → Fin φs.length // Function.Involutive f} //
|
||||
uncontractedFromInvolution f = c.1}
|
||||
|
@ -245,35 +242,35 @@ def toInvolution : {φs : List 𝓕} → (c : Contractions φs) →
|
|||
rw [@Sigma.subtype_ext_iff] at hF0
|
||||
ext1
|
||||
rw [hF0.2]
|
||||
simp
|
||||
simp only [Nat.succ_eq_add_one]
|
||||
congr 1
|
||||
· rw [hF1]
|
||||
· refine involutionAddEquiv_cast' ?_ n' _ _
|
||||
rw [hF1]
|
||||
rw [uncontractedFromInvolution_cons]
|
||||
have hx := (toInvolution ⟨aux, c⟩).2
|
||||
simp at hx
|
||||
simp
|
||||
simp only at hx
|
||||
simp only [Nat.succ_eq_add_one]
|
||||
refine optionEraseZ_ext ?_ ?_ ?_
|
||||
· dsimp [F]
|
||||
· dsimp only [F]
|
||||
rw [Equiv.apply_symm_apply]
|
||||
simp
|
||||
simp only
|
||||
rw [← hx]
|
||||
simp_all only
|
||||
· rfl
|
||||
· simp [hF2]
|
||||
dsimp [n']
|
||||
simp [finCongr]
|
||||
· simp only [hF2, Nat.succ_eq_add_one, Equiv.apply_symm_apply, Option.map_map]
|
||||
dsimp only [id_eq, eq_mpr_eq_cast, Nat.succ_eq_add_one, n']
|
||||
simp only [finCongr, Equiv.coe_fn_mk, Option.map_map]
|
||||
simp only [Nat.succ_eq_add_one, id_eq, eq_mpr_eq_cast, F, n']
|
||||
ext a : 1
|
||||
simp only [Option.mem_def, Option.map_eq_some', Function.comp_apply, Fin.cast_trans,
|
||||
Fin.cast_eq_self, exists_eq_right]
|
||||
|
||||
lemma toInvolution_length {φs φsᵤₙ : List 𝓕} {c : ContractionsAux φs φsᵤₙ} :
|
||||
φsᵤₙ.length = (Finset.filter (fun i => (toInvolution ⟨φsᵤₙ, c⟩).1.1 i = i) Finset.univ).card
|
||||
:= by
|
||||
lemma toInvolution_length_uncontracted {φs φsᵤₙ : List 𝓕} {c : ContractionsAux φs φsᵤₙ} :
|
||||
φsᵤₙ.length =
|
||||
(Finset.filter (fun i => (toInvolution ⟨φsᵤₙ, c⟩).1.1 i = i) Finset.univ).card := by
|
||||
have h2 := (toInvolution ⟨φsᵤₙ, c⟩).2
|
||||
simp at h2
|
||||
simp only at h2
|
||||
conv_lhs => rw [← h2]
|
||||
exact Mathlib.Vector.length_val (uncontractedFromInvolution (toInvolution ⟨φsᵤₙ, c⟩).1)
|
||||
|
||||
|
@ -282,11 +279,11 @@ lemma toInvolution_cons {φs φsᵤₙ : List 𝓕} {φ : 𝓕}
|
|||
(toInvolution ⟨optionEraseZ φsᵤₙ φ n, ContractionsAux.cons n c⟩).1
|
||||
= (involutionCons φs.length).symm ⟨(toInvolution ⟨φsᵤₙ, c⟩).1,
|
||||
(involutionAddEquiv (toInvolution ⟨φsᵤₙ, c⟩).1).symm
|
||||
(Option.map (finCongr (toInvolution_length)) n)⟩ := by
|
||||
dsimp [toInvolution]
|
||||
(Option.map (finCongr (toInvolution_length_uncontracted)) n)⟩ := by
|
||||
dsimp only [List.length_cons, toInvolution, Nat.succ_eq_add_one, subset_refl, Set.coe_inclusion]
|
||||
congr 3
|
||||
rw [Option.map_map]
|
||||
simp [finCongr]
|
||||
simp only [finCongr, Equiv.coe_fn_mk]
|
||||
rfl
|
||||
|
||||
lemma toInvolution_consEquiv {φs : List 𝓕} {φ : 𝓕}
|
||||
|
@ -294,7 +291,7 @@ lemma toInvolution_consEquiv {φs : List 𝓕} {φ : 𝓕}
|
|||
(toInvolution ((consEquiv (φ := φ)).symm ⟨c, n⟩)).1 =
|
||||
(involutionCons φs.length).symm ⟨(toInvolution c).1,
|
||||
(involutionAddEquiv (toInvolution c).1).symm
|
||||
(Option.map (finCongr (toInvolution_length)) n)⟩ := by
|
||||
(Option.map (finCongr (toInvolution_length_uncontracted)) n)⟩ := by
|
||||
erw [toInvolution_cons]
|
||||
rfl
|
||||
|
||||
|
@ -308,13 +305,11 @@ lemma toInvolution_fromInvolution : {φs : List 𝓕} → (c : Contractions φs)
|
|||
fromInvolution (toInvolution c) = c
|
||||
| [], ⟨[], ContractionsAux.nil⟩ => rfl
|
||||
| φ :: φs, ⟨_, .cons (φsᵤₙ := φsᵤₙ) n c⟩ => by
|
||||
rw [toInvolution_cons]
|
||||
rw [fromInvolution_of_involutionCons]
|
||||
rw [Equiv.symm_apply_eq]
|
||||
dsimp [consEquiv]
|
||||
rw [toInvolution_cons, fromInvolution_of_involutionCons, Equiv.symm_apply_eq]
|
||||
dsimp only [consEquiv, Equiv.coe_fn_mk]
|
||||
refine consEquiv_ext ?_ ?_
|
||||
· exact toInvolution_fromInvolution ⟨φsᵤₙ, c⟩
|
||||
· simp [finCongr]
|
||||
· simp only [finCongr, Equiv.coe_fn_mk, Equiv.apply_symm_apply, Option.map_map]
|
||||
ext a : 1
|
||||
simp only [Option.mem_def, Option.map_eq_some', Function.comp_apply, Fin.cast_trans,
|
||||
Fin.cast_eq_self, exists_eq_right]
|
||||
|
@ -337,9 +332,11 @@ lemma fromInvolution_toInvolution : {φs : List 𝓕} → (f : {f : Fin (φs ).
|
|||
conv_rhs =>
|
||||
lhs
|
||||
rw [involutionAddEquiv_cast hx]
|
||||
simp [Nat.succ_eq_add_one,- eq_mpr_eq_cast, Equiv.trans_apply, -Equiv.optionCongr_apply]
|
||||
simp only [Nat.succ_eq_add_one, Equiv.trans_apply]
|
||||
rfl
|
||||
|
||||
/-- The equivalence between contractions and involutions.
|
||||
Note: This shows that the type of contractions only depends on the length of the list `φs`. -/
|
||||
def equivInvolutions {φs : List 𝓕} :
|
||||
Contractions φs ≃ {f : Fin φs.length → Fin φs.length // Function.Involutive f} where
|
||||
toFun := fun c => toInvolution c
|
||||
|
@ -347,11 +344,11 @@ def equivInvolutions {φs : List 𝓕} :
|
|||
left_inv := toInvolution_fromInvolution
|
||||
right_inv := fromInvolution_toInvolution
|
||||
|
||||
|
||||
/-!
|
||||
|
||||
## Full contractions and involutions.
|
||||
-/
|
||||
|
||||
lemma isFull_iff_uncontractedFromInvolution_empty {φs : List 𝓕} (c : Contractions φs) :
|
||||
IsFull c ↔ (uncontractedFromInvolution (equivInvolutions c)).1 = [] := by
|
||||
let l := toInvolution c
|
||||
|
@ -366,7 +363,7 @@ lemma isFull_iff_filter_card_involution_zero {φs : List 𝓕} (c : Contraction
|
|||
lemma isFull_iff_involution_no_fixed_points {φs : List 𝓕} (c : Contractions φs) :
|
||||
IsFull c ↔ ∀ (i : Fin φs.length), (equivInvolutions c).1 i ≠ i := by
|
||||
rw [isFull_iff_filter_card_involution_zero]
|
||||
simp
|
||||
simp only [Finset.card_eq_zero, ne_eq]
|
||||
rw [Finset.filter_eq_empty_iff]
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
|
@ -376,9 +373,9 @@ lemma isFull_iff_involution_no_fixed_points {φs : List 𝓕} (c : Contractions
|
|||
exact fun a => i h
|
||||
|
||||
|
||||
open Nat in
|
||||
def isFullInvolutionEquiv {φs : List 𝓕} :
|
||||
{c : Contractions φs // IsFull c} ≃ {f : Fin φs.length → Fin φs.length // Function.Involutive f ∧ (∀ i, f i ≠ i)} where
|
||||
/-- The equivalence between full contractions and fixed-point free involutions. -/
|
||||
def isFullInvolutionEquiv {φs : List 𝓕} : {c : Contractions φs // IsFull c} ≃
|
||||
{f : Fin φs.length → Fin φs.length // Function.Involutive f ∧ (∀ i, f i ≠ i)} where
|
||||
toFun c := ⟨equivInvolutions c.1, by
|
||||
apply And.intro (equivInvolutions c.1).2
|
||||
rw [← isFull_iff_involution_no_fixed_points]
|
||||
|
@ -392,5 +389,4 @@ def isFullInvolutionEquiv {φs : List 𝓕} :
|
|||
|
||||
|
||||
end Contractions
|
||||
|
||||
end Wick
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue