feat: replace FLT sorry with assumptions
This commit is contained in:
parent
388c824463
commit
70cafbf41e
2 changed files with 14 additions and 10 deletions
|
@ -54,7 +54,8 @@ lemma accGrav_Q_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) = 0) :
|
|||
simp_all
|
||||
linear_combination 3 * h2
|
||||
|
||||
lemma accGrav_Q_neq_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) ≠ 0) :
|
||||
lemma accGrav_Q_neq_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) ≠ 0)
|
||||
(FLTThree : FermatLastTheoremWith ℚ 3) :
|
||||
accGrav S.val = 0 := by
|
||||
have hE := E_zero_iff_Q_zero.mpr.mt hQ
|
||||
let S' := linearParametersQENeqZero.bijection.symm ⟨S.1.1, And.intro hQ hE⟩
|
||||
|
@ -64,13 +65,14 @@ lemma accGrav_Q_neq_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) ≠ 0
|
|||
change _ = S.val at hS'
|
||||
rw [← hS'] at hC
|
||||
rw [← hS']
|
||||
exact S'.grav_of_cubic hC
|
||||
exact S'.grav_of_cubic hC FLTThree
|
||||
|
||||
/-- Any solution to the ACCs without gravity satifies the gravitational ACC. -/
|
||||
theorem accGravSatisfied {S : (SMNoGrav 1).Sols} : accGrav S.val = 0 := by
|
||||
theorem accGravSatisfied {S : (SMNoGrav 1).Sols} (FLTThree : FermatLastTheoremWith ℚ 3) :
|
||||
accGrav S.val = 0 := by
|
||||
by_cases hQ : Q S.val (0 : Fin 1)= 0
|
||||
exact accGrav_Q_zero hQ
|
||||
exact accGrav_Q_neq_zero hQ
|
||||
exact accGrav_Q_neq_zero hQ FLTThree
|
||||
|
||||
|
||||
end One
|
||||
|
|
|
@ -285,9 +285,9 @@ lemma cubic (S : linearParametersQENeqZero) :
|
|||
simp_all
|
||||
rw [add_eq_zero_iff_eq_neg]
|
||||
|
||||
lemma FLTThree : FermatLastTheoremWith ℚ 3 := by sorry
|
||||
|
||||
lemma cubic_v_or_w_zero (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0) :
|
||||
lemma cubic_v_or_w_zero (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0)
|
||||
(FLTThree : FermatLastTheoremWith ℚ 3) :
|
||||
S.v = 0 ∨ S.w = 0 := by
|
||||
rw [S.cubic] at h
|
||||
have h1 : (-1)^3 = (-1 : ℚ):= by rfl
|
||||
|
@ -335,9 +335,10 @@ lemma cube_w_zero (S : linearParametersQENeqZero) (h : accCube (bijection S).1.v
|
|||
simp_all
|
||||
linear_combination h'
|
||||
|
||||
lemma cube_w_v (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0) :
|
||||
lemma cube_w_v (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0)
|
||||
(FLTThree : FermatLastTheoremWith ℚ 3) :
|
||||
(S.v = -1 ∧ S.w = 0) ∨ (S.v = 0 ∧ S.w = -1) := by
|
||||
have h' := cubic_v_or_w_zero S h
|
||||
have h' := cubic_v_or_w_zero S h FLTThree
|
||||
cases' h' with hx hx
|
||||
simp [hx]
|
||||
exact cubic_v_zero S h hx
|
||||
|
@ -357,10 +358,11 @@ lemma grav (S : linearParametersQENeqZero) : accGrav (bijection S).1.val = 0 ↔
|
|||
rw [h]
|
||||
ring
|
||||
|
||||
lemma grav_of_cubic (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0) :
|
||||
lemma grav_of_cubic (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0)
|
||||
(FLTThree : FermatLastTheoremWith ℚ 3) :
|
||||
accGrav (bijection S).1.val = 0 := by
|
||||
rw [grav]
|
||||
have h' := cube_w_v S h
|
||||
have h' := cube_w_v S h FLTThree
|
||||
cases' h' with h h
|
||||
rw [h.1, h.2]
|
||||
simp only [add_zero]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue