refactor: lint
This commit is contained in:
parent
6433259bc4
commit
70f617096b
16 changed files with 103 additions and 87 deletions
|
@ -76,7 +76,7 @@ lemma sum_of_vectors {n : ℕ} (f : Fin k → (PureU1 n).LinSols) (j : Fin n) :
|
|||
sum_of_anomaly_free_linear (fun i => f i) j
|
||||
|
||||
TODO "The definition of `coordinateMap` here may be improved by replacing
|
||||
`Finsupp.equivFunOnFinite` with `Finsupp.linearEquivFunOnFinite`. Investigate this."
|
||||
`Finsupp.equivFunOnFinite` with `Finsupp.linearEquivFunOnFinite`. Investigate this."
|
||||
/-- The coordinate map for the basis. -/
|
||||
noncomputable
|
||||
def coordinateMap : (PureU1 n.succ).LinSols ≃ₗ[ℚ] Fin n →₀ ℚ where
|
||||
|
|
|
@ -203,7 +203,8 @@ lemma ι_eq_zero_iff_mem_ideal (x : FieldOpFreeAlgebra 𝓕) :
|
|||
simp only
|
||||
rfl
|
||||
|
||||
lemma bosonicProj_mem_fieldOpIdealSet_or_zero (x : FieldOpFreeAlgebra 𝓕) (hx : x ∈ 𝓕.fieldOpIdealSet) :
|
||||
lemma bosonicProj_mem_fieldOpIdealSet_or_zero (x : FieldOpFreeAlgebra 𝓕)
|
||||
(hx : x ∈ 𝓕.fieldOpIdealSet) :
|
||||
x.bosonicProj.1 ∈ 𝓕.fieldOpIdealSet ∨ x.bosonicProj = 0 := by
|
||||
have hx' := hx
|
||||
simp only [fieldOpIdealSet, exists_prop, Set.mem_setOf_eq] at hx
|
||||
|
@ -234,7 +235,8 @@ lemma bosonicProj_mem_fieldOpIdealSet_or_zero (x : FieldOpFreeAlgebra 𝓕) (hx
|
|||
· right
|
||||
rw [bosonicProj_of_mem_fermionic _ h]
|
||||
|
||||
lemma fermionicProj_mem_fieldOpIdealSet_or_zero (x : FieldOpFreeAlgebra 𝓕) (hx : x ∈ 𝓕.fieldOpIdealSet) :
|
||||
lemma fermionicProj_mem_fieldOpIdealSet_or_zero (x : FieldOpFreeAlgebra 𝓕)
|
||||
(hx : x ∈ 𝓕.fieldOpIdealSet) :
|
||||
x.fermionicProj.1 ∈ 𝓕.fieldOpIdealSet ∨ x.fermionicProj = 0 := by
|
||||
have hx' := hx
|
||||
simp only [fieldOpIdealSet, exists_prop, Set.mem_setOf_eq] at hx
|
||||
|
@ -265,10 +267,12 @@ lemma fermionicProj_mem_fieldOpIdealSet_or_zero (x : FieldOpFreeAlgebra 𝓕) (h
|
|||
rw [fermionicProj_of_mem_fermionic _ h]
|
||||
simpa using hx'
|
||||
|
||||
lemma bosonicProj_mem_ideal (x : FieldOpFreeAlgebra 𝓕) (hx : x ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) :
|
||||
lemma bosonicProj_mem_ideal (x : FieldOpFreeAlgebra 𝓕)
|
||||
(hx : x ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) :
|
||||
x.bosonicProj.1 ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet := by
|
||||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] at hx
|
||||
let p {k : Set 𝓕.FieldOpFreeAlgebra} (a : FieldOpFreeAlgebra 𝓕) (h : a ∈ AddSubgroup.closure k) : Prop :=
|
||||
let p {k : Set 𝓕.FieldOpFreeAlgebra} (a : FieldOpFreeAlgebra 𝓕)
|
||||
(h : a ∈ AddSubgroup.closure k) : Prop :=
|
||||
a.bosonicProj.1 ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet
|
||||
change p x hx
|
||||
apply AddSubgroup.closure_induction
|
||||
|
@ -401,7 +405,8 @@ lemma bosonicProj_mem_ideal (x : FieldOpFreeAlgebra 𝓕) (hx : x ∈ TwoSidedId
|
|||
· intro x hx
|
||||
simp [p]
|
||||
|
||||
lemma fermionicProj_mem_ideal (x : FieldOpFreeAlgebra 𝓕) (hx : x ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) :
|
||||
lemma fermionicProj_mem_ideal (x : FieldOpFreeAlgebra 𝓕)
|
||||
(hx : x ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) :
|
||||
x.fermionicProj.1 ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet := by
|
||||
have hb := bosonicProj_mem_ideal x hx
|
||||
rw [← ι_eq_zero_iff_mem_ideal] at hx hb ⊢
|
||||
|
|
|
@ -52,7 +52,8 @@ lemma ι_normalOrderF_superCommuteF_ofCrAnListF_ofCrAnListF_eq_zero
|
|||
|
||||
lemma ι_normalOrderF_superCommuteF_ofCrAnListF_eq_zero
|
||||
(φa φa' : 𝓕.CrAnFieldOp) (φs : List 𝓕.CrAnFieldOp)
|
||||
(a : 𝓕.FieldOpFreeAlgebra) : ι 𝓝ᶠ(ofCrAnListF φs * [ofCrAnOpF φa, ofCrAnOpF φa']ₛca * a) = 0 := by
|
||||
(a : 𝓕.FieldOpFreeAlgebra) :
|
||||
ι 𝓝ᶠ(ofCrAnListF φs * [ofCrAnOpF φa, ofCrAnOpF φa']ₛca * a) = 0 := by
|
||||
have hf : ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
|
||||
mulLinearMap (ofCrAnListF φs * [ofCrAnOpF φa, ofCrAnOpF φa']ₛca) = 0 := by
|
||||
apply ofCrAnListFBasis.ext
|
||||
|
@ -126,7 +127,7 @@ lemma ι_normalOrderF_superCommuteF_ofCrAnListF_eq_zero_mul
|
|||
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF (ofCrAnListF φs)) = 0 := by
|
||||
apply ofCrAnListFBasis.ext
|
||||
intro φs'
|
||||
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, FieldOpFreeAlgebra.ofListBasis_eq_ofList,
|
||||
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, ofListBasis_eq_ofList,
|
||||
LinearMap.coe_comp, Function.comp_apply, LinearMap.flip_apply, AlgHom.toLinearMap_apply,
|
||||
LinearMap.zero_apply]
|
||||
rw [ι_normalOrderF_superCommuteF_ofCrAnListF_ofCrAnListF_eq_zero_mul]
|
||||
|
@ -142,7 +143,7 @@ lemma ι_normalOrderF_superCommuteF_eq_zero_mul
|
|||
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF.flip c) = 0 := by
|
||||
apply ofCrAnListFBasis.ext
|
||||
intro φs
|
||||
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, FieldOpFreeAlgebra.ofListBasis_eq_ofList,
|
||||
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, ofListBasis_eq_ofList,
|
||||
LinearMap.coe_comp, Function.comp_apply, LinearMap.flip_apply, AlgHom.toLinearMap_apply,
|
||||
LinearMap.zero_apply]
|
||||
rw [ι_normalOrderF_superCommuteF_ofCrAnListF_eq_zero_mul]
|
||||
|
@ -182,7 +183,8 @@ lemma ι_normalOrderF_superCommuteF_eq_zero (c d : 𝓕.FieldOpFreeAlgebra) : ι
|
|||
lemma ι_normalOrderF_zero_of_mem_ideal (a : 𝓕.FieldOpFreeAlgebra)
|
||||
(h : a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) : ι 𝓝ᶠ(a) = 0 := by
|
||||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] at h
|
||||
let p {k : Set 𝓕.FieldOpFreeAlgebra} (a : FieldOpFreeAlgebra 𝓕) (h : a ∈ AddSubgroup.closure k) := ι 𝓝ᶠ(a) = 0
|
||||
let p {k : Set 𝓕.FieldOpFreeAlgebra} (a : FieldOpFreeAlgebra 𝓕)
|
||||
(h : a ∈ AddSubgroup.closure k) := ι 𝓝ᶠ(a) = 0
|
||||
change p a h
|
||||
apply AddSubgroup.closure_induction
|
||||
· intro x hx
|
||||
|
|
|
@ -153,7 +153,8 @@ lemma ι_timeOrderF_superCommuteF_superCommuteF_ofCrAnListF {φ1 φ2 φ3 : 𝓕.
|
|||
simp
|
||||
|
||||
@[simp]
|
||||
lemma ι_timeOrderF_superCommuteF_superCommuteF {φ1 φ2 φ3 : 𝓕.CrAnFieldOp} (a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
lemma ι_timeOrderF_superCommuteF_superCommuteF {φ1 φ2 φ3 : 𝓕.CrAnFieldOp}
|
||||
(a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
ι 𝓣ᶠ(a * [ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca * b) = 0 := by
|
||||
let pb (b : 𝓕.FieldOpFreeAlgebra) (hc : b ∈ Submodule.span ℂ (Set.range ofCrAnListFBasis)) :
|
||||
Prop := ι 𝓣ᶠ(a * [ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca * b) = 0
|
||||
|
@ -303,7 +304,8 @@ lemma ι_timeOrderF_superCommuteF_neq_time {φ ψ : 𝓕.CrAnFieldOp}
|
|||
lemma ι_timeOrderF_zero_of_mem_ideal (a : 𝓕.FieldOpFreeAlgebra)
|
||||
(h : a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) : ι 𝓣ᶠ(a) = 0 := by
|
||||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] at h
|
||||
let p {k : Set 𝓕.FieldOpFreeAlgebra} (a : FieldOpFreeAlgebra 𝓕) (h : a ∈ AddSubgroup.closure k) := ι 𝓣ᶠ(a) = 0
|
||||
let p {k : Set 𝓕.FieldOpFreeAlgebra} (a : FieldOpFreeAlgebra 𝓕)
|
||||
(h : a ∈ AddSubgroup.closure k) := ι 𝓣ᶠ(a) = 0
|
||||
change p a h
|
||||
apply AddSubgroup.closure_induction
|
||||
· intro x hx
|
||||
|
|
|
@ -198,7 +198,8 @@ lemma ofListBasis_eq_ofList (φs : List 𝓕.CrAnFieldOp) :
|
|||
-/
|
||||
|
||||
/-- The bi-linear map associated with multiplication in `FieldOpFreeAlgebra`. -/
|
||||
noncomputable def mulLinearMap : FieldOpFreeAlgebra 𝓕 →ₗ[ℂ] FieldOpFreeAlgebra 𝓕 →ₗ[ℂ] FieldOpFreeAlgebra 𝓕 where
|
||||
noncomputable def mulLinearMap : FieldOpFreeAlgebra 𝓕 →ₗ[ℂ] FieldOpFreeAlgebra 𝓕 →ₗ[ℂ]
|
||||
FieldOpFreeAlgebra 𝓕 where
|
||||
toFun a := {
|
||||
toFun := fun b => a * b,
|
||||
map_add' := fun c d => by simp [mul_add]
|
||||
|
|
|
@ -30,7 +30,8 @@ lemma ofCrAnListF_mem_statisticSubmodule_of (φs : List 𝓕.CrAnFieldOp) (f : F
|
|||
refine Submodule.mem_span.mpr fun _ a => a ⟨φs, ⟨rfl, h⟩⟩
|
||||
|
||||
lemma ofCrAnListF_bosonic_or_fermionic (φs : List 𝓕.CrAnFieldOp) :
|
||||
ofCrAnListF φs ∈ statisticSubmodule bosonic ∨ ofCrAnListF φs ∈ statisticSubmodule fermionic := by
|
||||
ofCrAnListF φs ∈ statisticSubmodule bosonic ∨
|
||||
ofCrAnListF φs ∈ statisticSubmodule fermionic := by
|
||||
by_cases h : (𝓕 |>ₛ φs) = bosonic
|
||||
· left
|
||||
exact ofCrAnListF_mem_statisticSubmodule_of φs bosonic h
|
||||
|
@ -73,7 +74,8 @@ lemma bosonicProj_of_mem_bosonic (a : 𝓕.FieldOpFreeAlgebra) (h : a ∈ statis
|
|||
· intro a x hx hy
|
||||
simp_all [p]
|
||||
|
||||
lemma bosonicProj_of_mem_fermionic (a : 𝓕.FieldOpFreeAlgebra) (h : a ∈ statisticSubmodule fermionic) :
|
||||
lemma bosonicProj_of_mem_fermionic (a : 𝓕.FieldOpFreeAlgebra)
|
||||
(h : a ∈ statisticSubmodule fermionic) :
|
||||
bosonicProj a = 0 := by
|
||||
let p (a : 𝓕.FieldOpFreeAlgebra) (hx : a ∈ statisticSubmodule fermionic) : Prop :=
|
||||
bosonicProj a = 0
|
||||
|
@ -127,7 +129,8 @@ lemma fermionicProj_ofCrAnListF_if_bosonic (φs : List 𝓕.CrAnFieldOp) :
|
|||
simp only [neq_fermionic_iff_eq_bosonic] at h1
|
||||
simp [h1]
|
||||
|
||||
lemma fermionicProj_of_mem_fermionic (a : 𝓕.FieldOpFreeAlgebra) (h : a ∈ statisticSubmodule fermionic) :
|
||||
lemma fermionicProj_of_mem_fermionic (a : 𝓕.FieldOpFreeAlgebra)
|
||||
(h : a ∈ statisticSubmodule fermionic) :
|
||||
fermionicProj a = ⟨a, h⟩ := by
|
||||
let p (a : 𝓕.FieldOpFreeAlgebra) (hx : a ∈ statisticSubmodule fermionic) : Prop :=
|
||||
fermionicProj a = ⟨a, hx⟩
|
||||
|
@ -235,7 +238,8 @@ lemma directSum_eq_bosonic_plus_fermionic
|
|||
abel
|
||||
|
||||
/-- The instance of a graded algebra on `FieldOpFreeAlgebra`. -/
|
||||
instance fieldOpFreeAlgebraGrade : GradedAlgebra (A := 𝓕.FieldOpFreeAlgebra) statisticSubmodule where
|
||||
instance fieldOpFreeAlgebraGrade :
|
||||
GradedAlgebra (A := 𝓕.FieldOpFreeAlgebra) statisticSubmodule where
|
||||
one_mem := by
|
||||
simp only [statisticSubmodule]
|
||||
refine Submodule.mem_span.mpr fun p a => a ?_
|
||||
|
|
|
@ -69,7 +69,8 @@ lemma normalOrderF_normalOrderF_mid (a b c : 𝓕.FieldOpFreeAlgebra) :
|
|||
obtain ⟨φs', rfl⟩ := hx
|
||||
simp only [ofListBasis_eq_ofList, pb]
|
||||
let pa (a : 𝓕.FieldOpFreeAlgebra) (ha : a ∈ Submodule.span ℂ (Set.range ofCrAnListFBasis)) :
|
||||
Prop := 𝓝ᶠ(a * ofCrAnListF φs' * ofCrAnListF φs) = 𝓝ᶠ(a * 𝓝ᶠ(ofCrAnListF φs') * ofCrAnListF φs)
|
||||
Prop := 𝓝ᶠ(a * ofCrAnListF φs' * ofCrAnListF φs) =
|
||||
𝓝ᶠ(a * 𝓝ᶠ(ofCrAnListF φs') * ofCrAnListF φs)
|
||||
change pa a (Basis.mem_span _ a)
|
||||
apply Submodule.span_induction
|
||||
· intro x hx
|
||||
|
@ -101,13 +102,15 @@ lemma normalOrderF_normalOrderF_mid (a b c : 𝓕.FieldOpFreeAlgebra) :
|
|||
· intro x hx h hp
|
||||
simp_all [pc]
|
||||
|
||||
lemma normalOrderF_normalOrderF_right (a b : 𝓕.FieldOpFreeAlgebra) : 𝓝ᶠ(a * b) = 𝓝ᶠ(a * 𝓝ᶠ(b)) := by
|
||||
lemma normalOrderF_normalOrderF_right (a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
𝓝ᶠ(a * b) = 𝓝ᶠ(a * 𝓝ᶠ(b)) := by
|
||||
trans 𝓝ᶠ(a * b * 1)
|
||||
· simp
|
||||
· rw [normalOrderF_normalOrderF_mid]
|
||||
simp
|
||||
|
||||
lemma normalOrderF_normalOrderF_left (a b : 𝓕.FieldOpFreeAlgebra) : 𝓝ᶠ(a * b) = 𝓝ᶠ(𝓝ᶠ(a) * b) := by
|
||||
lemma normalOrderF_normalOrderF_left (a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
𝓝ᶠ(a * b) = 𝓝ᶠ(𝓝ᶠ(a) * b) := by
|
||||
trans 𝓝ᶠ(1 * a * b)
|
||||
· simp
|
||||
· rw [normalOrderF_normalOrderF_mid]
|
||||
|
@ -374,7 +377,8 @@ lemma normalOrderF_ofFieldOpF_mul_ofFieldOpF (φ φ' : 𝓕.FieldOp) :
|
|||
(crPartF φ' * anPartF φ) +
|
||||
crPartF φ * anPartF φ' +
|
||||
anPartF φ * anPartF φ' := by
|
||||
rw [ofFieldOpF_eq_crPartF_add_anPartF, ofFieldOpF_eq_crPartF_add_anPartF, mul_add, add_mul, add_mul]
|
||||
rw [ofFieldOpF_eq_crPartF_add_anPartF, ofFieldOpF_eq_crPartF_add_anPartF, mul_add, add_mul,
|
||||
add_mul]
|
||||
simp only [map_add, normalOrderF_crPartF_mul_crPartF, normalOrderF_anPartF_mul_crPartF,
|
||||
instCommGroup.eq_1, normalOrderF_crPartF_mul_anPartF, normalOrderF_anPartF_mul_anPartF]
|
||||
abel
|
||||
|
@ -397,8 +401,8 @@ lemma normalOrderF_superCommuteF_ofCrAnListF_create_create_ofCrAnListF
|
|||
rw [superCommuteF_ofCrAnOpF_ofCrAnOpF, mul_sub, sub_mul, map_sub]
|
||||
conv_lhs =>
|
||||
lhs; rhs
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, ← ofCrAnListF_append, ← ofCrAnListF_append,
|
||||
← ofCrAnListF_append]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, ← ofCrAnListF_append,
|
||||
← ofCrAnListF_append, ← ofCrAnListF_append]
|
||||
conv_lhs =>
|
||||
lhs
|
||||
rw [normalOrderF_ofCrAnListF, normalOrderList_eq_createFilter_append_annihilateFilter]
|
||||
|
@ -414,8 +418,8 @@ lemma normalOrderF_superCommuteF_ofCrAnListF_create_create_ofCrAnListF
|
|||
rhs; rhs
|
||||
rw [smul_mul_assoc, Algebra.mul_smul_comm, smul_mul_assoc]
|
||||
rhs
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, ← ofCrAnListF_append, ← ofCrAnListF_append,
|
||||
← ofCrAnListF_append]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, ← ofCrAnListF_append,
|
||||
← ofCrAnListF_append, ← ofCrAnListF_append]
|
||||
conv_lhs =>
|
||||
rhs
|
||||
rw [map_smul]
|
||||
|
@ -459,8 +463,8 @@ lemma normalOrderF_superCommuteF_ofCrAnListF_annihilate_annihilate_ofCrAnListF
|
|||
rw [superCommuteF_ofCrAnOpF_ofCrAnOpF, mul_sub, sub_mul, map_sub]
|
||||
conv_lhs =>
|
||||
lhs; rhs
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, ← ofCrAnListF_append, ← ofCrAnListF_append,
|
||||
← ofCrAnListF_append]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, ← ofCrAnListF_append,
|
||||
← ofCrAnListF_append, ← ofCrAnListF_append]
|
||||
conv_lhs =>
|
||||
lhs
|
||||
rw [normalOrderF_ofCrAnListF, normalOrderList_eq_createFilter_append_annihilateFilter]
|
||||
|
@ -477,8 +481,8 @@ lemma normalOrderF_superCommuteF_ofCrAnListF_annihilate_annihilate_ofCrAnListF
|
|||
rw [smul_mul_assoc]
|
||||
rw [Algebra.mul_smul_comm, smul_mul_assoc]
|
||||
rhs
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, ← ofCrAnListF_append, ← ofCrAnListF_append,
|
||||
← ofCrAnListF_append]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, ← ofCrAnListF_append,
|
||||
← ofCrAnListF_append, ← ofCrAnListF_append]
|
||||
conv_lhs =>
|
||||
rhs
|
||||
rw [map_smul]
|
||||
|
@ -524,8 +528,9 @@ lemma ofCrAnListF_superCommuteF_normalOrderF_ofCrAnListF (φs φs' : List 𝓕.C
|
|||
[ofCrAnListF φs, 𝓝ᶠ(ofCrAnListF φs')]ₛca =
|
||||
ofCrAnListF φs * 𝓝ᶠ(ofCrAnListF φs') -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofCrAnListF φs') * ofCrAnListF φs := by
|
||||
simp [normalOrderF_ofCrAnListF, map_smul, superCommuteF_ofCrAnListF_ofCrAnListF, ofCrAnListF_append,
|
||||
smul_sub, smul_smul, mul_comm]
|
||||
simp only [normalOrderF_ofCrAnListF, map_smul, superCommuteF_ofCrAnListF_ofCrAnListF,
|
||||
ofCrAnListF_append, instCommGroup.eq_1, normalOrderList_statistics, smul_sub, smul_smul,
|
||||
Algebra.mul_smul_comm, mul_comm, Algebra.smul_mul_assoc]
|
||||
|
||||
lemma ofCrAnListF_superCommuteF_normalOrderF_ofFieldOpListF (φs : List 𝓕.CrAnFieldOp)
|
||||
(φs' : List 𝓕.FieldOp) : [ofCrAnListF φs, 𝓝ᶠ(ofFieldOpListF φs')]ₛca =
|
||||
|
|
|
@ -26,7 +26,8 @@ open FieldStatistic
|
|||
/-- The super commutor on the creation and annihlation algebra. For two bosonic operators
|
||||
or a bosonic and fermionic operator this corresponds to the usual commutator
|
||||
whilst for two fermionic operators this corresponds to the anti-commutator. -/
|
||||
noncomputable def superCommuteF : 𝓕.FieldOpFreeAlgebra →ₗ[ℂ] 𝓕.FieldOpFreeAlgebra →ₗ[ℂ] 𝓕.FieldOpFreeAlgebra :=
|
||||
noncomputable def superCommuteF : 𝓕.FieldOpFreeAlgebra →ₗ[ℂ] 𝓕.FieldOpFreeAlgebra →ₗ[ℂ]
|
||||
𝓕.FieldOpFreeAlgebra :=
|
||||
Basis.constr ofCrAnListFBasis ℂ fun φs =>
|
||||
Basis.constr ofCrAnListFBasis ℂ fun φs' =>
|
||||
ofCrAnListF (φs ++ φs') - 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnListF (φs' ++ φs)
|
||||
|
@ -86,13 +87,15 @@ lemma superCommuteF_ofFieldOpListF_ofFieldOpFsList (φ : List 𝓕.FieldOp) (φs
|
|||
lemma superCommuteF_ofFieldOpF_ofFieldOpFsList (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
|
||||
[ofFieldOpF φ, ofFieldOpListF φs]ₛca = ofFieldOpF φ * ofFieldOpListF φs -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofFieldOpListF φs * ofFieldOpF φ := by
|
||||
rw [← ofFieldOpListF_singleton, superCommuteF_ofFieldOpListF_ofFieldOpFsList, ofFieldOpListF_singleton]
|
||||
rw [← ofFieldOpListF_singleton, superCommuteF_ofFieldOpListF_ofFieldOpFsList,
|
||||
ofFieldOpListF_singleton]
|
||||
simp
|
||||
|
||||
lemma superCommuteF_ofFieldOpListF_ofFieldOpF (φs : List 𝓕.FieldOp) (φ : 𝓕.FieldOp) :
|
||||
[ofFieldOpListF φs, ofFieldOpF φ]ₛca = ofFieldOpListF φs * ofFieldOpF φ -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofFieldOpF φ * ofFieldOpListF φs := by
|
||||
rw [← ofFieldOpListF_singleton, superCommuteF_ofFieldOpListF_ofFieldOpFsList, ofFieldOpListF_singleton]
|
||||
rw [← ofFieldOpListF_singleton, superCommuteF_ofFieldOpListF_ofFieldOpFsList,
|
||||
ofFieldOpListF_singleton]
|
||||
simp
|
||||
|
||||
lemma superCommuteF_anPartF_crPartF (φ φ' : 𝓕.FieldOp) :
|
||||
|
@ -269,7 +272,8 @@ lemma ofCrAnOpF_mul_ofCrAnListF_eq_superCommuteF (φ : 𝓕.CrAnFieldOp) (φs' :
|
|||
simp
|
||||
|
||||
lemma ofFieldOpListF_mul_ofFieldOpListF_eq_superCommuteF (φs φs' : List 𝓕.FieldOp) :
|
||||
ofFieldOpListF φs * ofFieldOpListF φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofFieldOpListF φs' * ofFieldOpListF φs
|
||||
ofFieldOpListF φs * ofFieldOpListF φs' =
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofFieldOpListF φs' * ofFieldOpListF φs
|
||||
+ [ofFieldOpListF φs, ofFieldOpListF φs']ₛca := by
|
||||
rw [superCommuteF_ofFieldOpListF_ofFieldOpFsList]
|
||||
simp
|
||||
|
@ -314,8 +318,9 @@ lemma anPartF_mul_anPartF_eq_superCommuteF (φ φ' : 𝓕.FieldOp) :
|
|||
rw [superCommuteF_anPartF_anPartF]
|
||||
simp
|
||||
|
||||
lemma ofCrAnListF_mul_ofFieldOpListF_eq_superCommuteF (φs : List 𝓕.CrAnFieldOp) (φs' : List 𝓕.FieldOp) :
|
||||
ofCrAnListF φs * ofFieldOpListF φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofFieldOpListF φs' * ofCrAnListF φs
|
||||
lemma ofCrAnListF_mul_ofFieldOpListF_eq_superCommuteF (φs : List 𝓕.CrAnFieldOp)
|
||||
(φs' : List 𝓕.FieldOp) : ofCrAnListF φs * ofFieldOpListF φs' =
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofFieldOpListF φs' * ofCrAnListF φs
|
||||
+ [ofCrAnListF φs, ofFieldOpListF φs']ₛca := by
|
||||
rw [superCommuteF_ofCrAnListF_ofFieldOpFsList]
|
||||
simp
|
||||
|
@ -365,7 +370,8 @@ lemma superCommuteF_ofCrAnListF_ofCrAnListF_cons (φ : 𝓕.CrAnFieldOp) (φs φ
|
|||
rw [superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
conv_rhs =>
|
||||
lhs
|
||||
rw [← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF, sub_mul, ← ofCrAnListF_append]
|
||||
rw [← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF, sub_mul,
|
||||
← ofCrAnListF_append]
|
||||
rhs
|
||||
rw [FieldStatistic.ofList_singleton, ofCrAnListF_append, ofCrAnListF_singleton, smul_mul_assoc,
|
||||
mul_assoc, ← ofCrAnListF_append]
|
||||
|
@ -410,14 +416,16 @@ lemma superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum (φs : List 𝓕.CrAnFieldOp)
|
|||
| [] => by
|
||||
simp [← ofCrAnListF_nil, superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
| φ :: φs' => by
|
||||
rw [superCommuteF_ofCrAnListF_ofCrAnListF_cons, superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum φs φs']
|
||||
rw [superCommuteF_ofCrAnListF_ofCrAnListF_cons,
|
||||
superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum φs φs']
|
||||
conv_rhs => erw [Fin.sum_univ_succ]
|
||||
congr 1
|
||||
· simp
|
||||
· simp [Finset.mul_sum, smul_smul, ofCrAnListF_cons, mul_assoc,
|
||||
FieldStatistic.ofList_cons_eq_mul, mul_comm]
|
||||
|
||||
lemma superCommuteF_ofCrAnListF_ofFieldOpListF_eq_sum (φs : List 𝓕.CrAnFieldOp) : (φs' : List 𝓕.FieldOp) →
|
||||
lemma superCommuteF_ofCrAnListF_ofFieldOpListF_eq_sum (φs : List 𝓕.CrAnFieldOp) :
|
||||
(φs' : List 𝓕.FieldOp) →
|
||||
[ofCrAnListF φs, ofFieldOpListF φs']ₛca =
|
||||
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs'.take n) •
|
||||
ofFieldOpListF (φs'.take n) * [ofCrAnListF φs, ofFieldOpF (φs'.get n)]ₛca *
|
||||
|
@ -643,12 +651,14 @@ lemma bosonic_superCommuteF {a b : 𝓕.FieldOpFreeAlgebra} (ha : a ∈ statisti
|
|||
simp only [add_mul, mul_add]
|
||||
abel
|
||||
|
||||
lemma superCommuteF_bonsonic_symm {a b : 𝓕.FieldOpFreeAlgebra} (hb : b ∈ statisticSubmodule bosonic) :
|
||||
lemma superCommuteF_bonsonic_symm {a b : 𝓕.FieldOpFreeAlgebra}
|
||||
(hb : b ∈ statisticSubmodule bosonic) :
|
||||
[a, b]ₛca = - [b, a]ₛca := by
|
||||
rw [bosonic_superCommuteF hb, superCommuteF_bonsonic hb]
|
||||
simp
|
||||
|
||||
lemma bonsonic_superCommuteF_symm {a b : 𝓕.FieldOpFreeAlgebra} (ha : a ∈ statisticSubmodule bosonic) :
|
||||
lemma bonsonic_superCommuteF_symm {a b : 𝓕.FieldOpFreeAlgebra}
|
||||
(ha : a ∈ statisticSubmodule bosonic) :
|
||||
[a, b]ₛca = - [b, a]ₛca := by
|
||||
rw [bosonic_superCommuteF ha, superCommuteF_bonsonic ha]
|
||||
simp
|
||||
|
@ -808,8 +818,8 @@ lemma superCommuteF_bosonic_ofCrAnListF_eq_sum (a : 𝓕.FieldOpFreeAlgebra) (φ
|
|||
simp_all [p, Finset.smul_sum]
|
||||
· exact ha
|
||||
|
||||
lemma superCommuteF_fermionic_ofCrAnListF_eq_sum (a : 𝓕.FieldOpFreeAlgebra) (φs : List 𝓕.CrAnFieldOp)
|
||||
(ha : a ∈ statisticSubmodule fermionic) :
|
||||
lemma superCommuteF_fermionic_ofCrAnListF_eq_sum (a : 𝓕.FieldOpFreeAlgebra)
|
||||
(φs : List 𝓕.CrAnFieldOp) (ha : a ∈ statisticSubmodule fermionic) :
|
||||
[a, ofCrAnListF φs]ₛca = ∑ (n : Fin φs.length), 𝓢(fermionic, 𝓕 |>ₛ φs.take n) •
|
||||
ofCrAnListF (φs.take n) * [a, ofCrAnOpF (φs.get n)]ₛca *
|
||||
ofCrAnListF (φs.drop (n + 1)) := by
|
||||
|
|
|
@ -39,7 +39,8 @@ lemma timeOrderF_ofCrAnListF (φs : List 𝓕.CrAnFieldOp) :
|
|||
rw [← ofListBasis_eq_ofList]
|
||||
simp only [timeOrderF, Basis.constr_basis]
|
||||
|
||||
lemma timeOrderF_timeOrderF_mid (a b c : 𝓕.FieldOpFreeAlgebra) : 𝓣ᶠ(a * b * c) = 𝓣ᶠ(a * 𝓣ᶠ(b) * c) := by
|
||||
lemma timeOrderF_timeOrderF_mid (a b c : 𝓕.FieldOpFreeAlgebra) :
|
||||
𝓣ᶠ(a * b * c) = 𝓣ᶠ(a * 𝓣ᶠ(b) * c) := by
|
||||
let pc (c : 𝓕.FieldOpFreeAlgebra) (hc : c ∈ Submodule.span ℂ (Set.range ofCrAnListFBasis)) :
|
||||
Prop := 𝓣ᶠ(a * b * c) = 𝓣ᶠ(a * 𝓣ᶠ(b) * c)
|
||||
change pc c (Basis.mem_span _ c)
|
||||
|
@ -55,7 +56,8 @@ lemma timeOrderF_timeOrderF_mid (a b c : 𝓕.FieldOpFreeAlgebra) : 𝓣ᶠ(a *
|
|||
obtain ⟨φs', rfl⟩ := hx
|
||||
simp only [ofListBasis_eq_ofList, pb]
|
||||
let pa (a : 𝓕.FieldOpFreeAlgebra) (ha : a ∈ Submodule.span ℂ (Set.range ofCrAnListFBasis)) :
|
||||
Prop := 𝓣ᶠ(a * ofCrAnListF φs' * ofCrAnListF φs) = 𝓣ᶠ(a * 𝓣ᶠ(ofCrAnListF φs') * ofCrAnListF φs)
|
||||
Prop := 𝓣ᶠ(a * ofCrAnListF φs' * ofCrAnListF φs) =
|
||||
𝓣ᶠ(a * 𝓣ᶠ(ofCrAnListF φs') * ofCrAnListF φs)
|
||||
change pa a (Basis.mem_span _ a)
|
||||
apply Submodule.span_induction
|
||||
· intro x hx
|
||||
|
@ -116,7 +118,8 @@ lemma timeOrderF_ofFieldOpListF_nil : timeOrderF (𝓕 := 𝓕) (ofFieldOpListF
|
|||
simp [timeOrderSign, Wick.koszulSign, timeOrderList]
|
||||
|
||||
@[simp]
|
||||
lemma timeOrderF_ofFieldOpListF_singleton (φ : 𝓕.FieldOp) : 𝓣ᶠ(ofFieldOpListF [φ]) = ofFieldOpListF [φ] := by
|
||||
lemma timeOrderF_ofFieldOpListF_singleton (φ : 𝓕.FieldOp) :
|
||||
𝓣ᶠ(ofFieldOpListF [φ]) = ofFieldOpListF [φ] := by
|
||||
simp [timeOrderF_ofFieldOpListF, timeOrderSign, timeOrderList]
|
||||
|
||||
lemma timeOrderF_ofFieldOpF_ofFieldOpF_ordered {φ ψ : 𝓕.FieldOp} (h : timeOrderRel φ ψ) :
|
||||
|
|
|
@ -532,9 +532,9 @@ lemma join_getDual?_apply_uncontractedListEmb_some {φs : List 𝓕.FieldOp}
|
|||
simp
|
||||
|
||||
@[simp]
|
||||
lemma join_getDual?_apply_uncontractedListEmb {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length)
|
||||
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) (i : Fin [φsΛ]ᵘᶜ.length) :
|
||||
((join φsΛ φsucΛ).getDual? (uncontractedListEmd i)) =
|
||||
lemma join_getDual?_apply_uncontractedListEmb {φs : List 𝓕.FieldOp}
|
||||
(φsΛ : WickContraction φs.length) (φsucΛ : WickContraction [φsΛ]ᵘᶜ.length)
|
||||
(i : Fin [φsΛ]ᵘᶜ.length) : ((join φsΛ φsucΛ).getDual? (uncontractedListEmd i)) =
|
||||
Option.map uncontractedListEmd (φsucΛ.getDual? i) := by
|
||||
by_cases h : (φsucΛ.getDual? i).isSome
|
||||
· rw [join_getDual?_apply_uncontractedListEmb_some]
|
||||
|
@ -608,9 +608,8 @@ lemma join_singleton_getDual?_right {φs : List 𝓕.FieldOp}
|
|||
left
|
||||
exact Finset.pair_comm j i
|
||||
|
||||
|
||||
lemma exists_contraction_pair_of_card_ge_zero {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length)
|
||||
(h : 0 < φsΛ.1.card) :
|
||||
lemma exists_contraction_pair_of_card_ge_zero {φs : List 𝓕.FieldOp}
|
||||
(φsΛ : WickContraction φs.length) (h : 0 < φsΛ.1.card) :
|
||||
∃ a, a ∈ φsΛ.1 := by
|
||||
simpa using h
|
||||
|
||||
|
@ -656,5 +655,4 @@ lemma join_not_gradingCompliant_of_left_not_gradingCompliant {φs : List 𝓕.Fi
|
|||
join_sndFieldOfContract_joinLift]
|
||||
exact ha2
|
||||
|
||||
|
||||
end WickContraction
|
||||
|
|
|
@ -158,8 +158,8 @@ lemma signInsertNone_eq_prod_prod (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
|||
erw [hG a]
|
||||
rfl
|
||||
|
||||
lemma sign_insert_none_zero (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) :
|
||||
(φsΛ ↩Λ φ 0 none).sign = φsΛ.sign := by
|
||||
lemma sign_insert_none_zero (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
||||
(φsΛ : WickContraction φs.length) : (φsΛ ↩Λ φ 0 none).sign = φsΛ.sign := by
|
||||
rw [sign_insert_none]
|
||||
simp [signInsertNone]
|
||||
|
||||
|
|
|
@ -19,14 +19,12 @@ variable {n : ℕ} (c : WickContraction n)
|
|||
open HepLean.List
|
||||
open FieldStatistic
|
||||
|
||||
|
||||
/-!
|
||||
|
||||
## Sign insert some
|
||||
|
||||
-/
|
||||
|
||||
|
||||
lemma stat_ofFinset_eq_one_of_gradingCompliant (φs : List 𝓕.FieldOp)
|
||||
(a : Finset (Fin φs.length)) (φsΛ : WickContraction φs.length) (hg : GradingCompliant φs φsΛ)
|
||||
(hnon : ∀ i, φsΛ.getDual? i = none → i ∉ a)
|
||||
|
@ -63,7 +61,6 @@ lemma stat_ofFinset_eq_one_of_gradingCompliant (φs : List 𝓕.FieldOp)
|
|||
exact False.elim (h1 hsom')
|
||||
rfl
|
||||
|
||||
|
||||
lemma signFinset_insertAndContract_some (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
||||
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (i1 i2 : Fin φs.length)
|
||||
(j : φsΛ.uncontracted) :
|
||||
|
|
|
@ -205,10 +205,8 @@ lemma join_singleton_sign_right {φs : List 𝓕.FieldOp}
|
|||
rw [sign_right_eq_prod_mul_prod]
|
||||
rfl
|
||||
|
||||
|
||||
lemma joinSignRightExtra_eq_i_j_finset_eq_if {φs : List 𝓕.FieldOp}
|
||||
{i j : Fin φs.length} (h : i < j)
|
||||
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) :
|
||||
{i j : Fin φs.length} (h : i < j) (φsucΛ : WickContraction [singleton h]ᵘᶜ.length) :
|
||||
joinSignRightExtra h φsucΛ = ∏ a,
|
||||
𝓢((𝓕|>ₛ [singleton h]ᵘᶜ[φsucΛ.sndFieldOfContract a]),
|
||||
𝓕 |>ₛ ⟨φs.get, (if uncontractedListEmd (φsucΛ.fstFieldOfContract a) < j ∧
|
||||
|
@ -303,13 +301,10 @@ lemma joinSignLeftExtra_eq_joinSignRightExtra {φs : List 𝓕.FieldOp}
|
|||
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) :
|
||||
joinSignLeftExtra h φsucΛ = joinSignRightExtra h φsucΛ := by
|
||||
/- Simplifying joinSignLeftExtra. -/
|
||||
rw [joinSignLeftExtra]
|
||||
rw [ofFinset_eq_prod]
|
||||
rw [map_prod]
|
||||
let e2 : Fin φs.length ≃ {x // (((singleton h).join φsucΛ).getDual? x).isSome} ⊕
|
||||
{x // ¬ (((singleton h).join φsucΛ).getDual? x).isSome} := by
|
||||
exact (Equiv.sumCompl fun a => (((singleton h).join φsucΛ).getDual? a).isSome = true).symm
|
||||
rw [← e2.symm.prod_comp]
|
||||
rw [joinSignLeftExtra, ofFinset_eq_prod, map_prod, ← e2.symm.prod_comp]
|
||||
simp only [Fin.getElem_fin, Fintype.prod_sum_type, instCommGroup]
|
||||
conv_lhs =>
|
||||
enter [2, 2, x]
|
||||
|
@ -326,8 +321,7 @@ lemma joinSignLeftExtra_eq_joinSignRightExtra {φs : List 𝓕.FieldOp}
|
|||
enter [2, a]
|
||||
rw [prod_finset_eq_mul_fst_snd]
|
||||
simp [e2, sigmaContractedEquiv]
|
||||
rw [prod_join]
|
||||
rw [singleton_prod]
|
||||
rw [prod_join, singleton_prod]
|
||||
simp only [join_fstFieldOfContract_joinLiftLeft, singleton_fstFieldOfContract,
|
||||
join_sndFieldOfContract_joinLift, singleton_sndFieldOfContract, lt_self_iff_false, and_false,
|
||||
↓reduceIte, map_one, mul_one, join_fstFieldOfContract_joinLiftRight,
|
||||
|
@ -384,17 +378,14 @@ lemma join_sign_singleton {φs : List 𝓕.FieldOp}
|
|||
{i j : Fin φs.length} (h : i < j) (hs : (𝓕 |>ₛ φs[i]) = (𝓕 |>ₛ φs[j]))
|
||||
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) :
|
||||
(join (singleton h) φsucΛ).sign = (singleton h).sign * φsucΛ.sign := by
|
||||
rw [join_singleton_sign_right]
|
||||
rw [join_singleton_sign_left h φsucΛ]
|
||||
rw [join_singleton_sign_right, join_singleton_sign_left h φsucΛ]
|
||||
rw [joinSignLeftExtra_eq_joinSignRightExtra h hs φsucΛ]
|
||||
rw [← mul_assoc]
|
||||
rw [mul_assoc _ _ (joinSignRightExtra h φsucΛ)]
|
||||
rw [← mul_assoc, mul_assoc _ _ (joinSignRightExtra h φsucΛ)]
|
||||
have h1 : (joinSignRightExtra h φsucΛ * joinSignRightExtra h φsucΛ) = 1 := by
|
||||
rw [← joinSignLeftExtra_eq_joinSignRightExtra h hs φsucΛ]
|
||||
simp [joinSignLeftExtra]
|
||||
simp only [instCommGroup, Fin.getElem_fin, h1, mul_one]
|
||||
rw [sign]
|
||||
rw [prod_join]
|
||||
rw [sign, prod_join]
|
||||
congr
|
||||
· rw [singleton_prod]
|
||||
simp
|
||||
|
@ -414,9 +405,7 @@ lemma join_sign_induction {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs
|
|||
| Nat.succ n, hn => by
|
||||
obtain ⟨i, j, hij, φsucΛ', rfl, h1, h2, h3⟩ :=
|
||||
exists_join_singleton_of_card_ge_zero φsΛ (by simp [hn]) hc
|
||||
rw [join_assoc]
|
||||
rw [join_sign_singleton hij h1]
|
||||
rw [join_sign_singleton hij h1]
|
||||
rw [join_assoc, join_sign_singleton hij h1, join_sign_singleton hij h1]
|
||||
have hn : φsucΛ'.1.card = n := by
|
||||
omega
|
||||
rw [join_sign_induction φsucΛ' (congr (by simp [join_uncontractedListGet]) φsucΛ) h2
|
||||
|
|
|
@ -199,8 +199,8 @@ lemma timeOrder_timeContract_mul_of_eqTimeOnly_left {φs : List 𝓕.FieldOp}
|
|||
rw [timeOrder_timeContract_mul_of_eqTimeOnly_mid φsΛ hl]
|
||||
simp
|
||||
|
||||
lemma exists_join_singleton_of_not_eqTimeOnly {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length)
|
||||
(h1 : ¬ φsΛ.EqTimeOnly) :
|
||||
lemma exists_join_singleton_of_not_eqTimeOnly {φs : List 𝓕.FieldOp}
|
||||
(φsΛ : WickContraction φs.length) (h1 : ¬ φsΛ.EqTimeOnly) :
|
||||
∃ (i j : Fin φs.length) (h : i < j) (φsucΛ : WickContraction [singleton h]ᵘᶜ.length),
|
||||
φsΛ = join (singleton h) φsucΛ ∧ (¬ timeOrderRel φs[i] φs[j] ∨ ¬ timeOrderRel φs[j] φs[i]) := by
|
||||
rw [eqTimeOnly_iff_forall_finset] at h1
|
||||
|
|
|
@ -325,7 +325,7 @@ lemma isBounded_of_𝓵_pos (h : 0 < P.𝓵) : P.IsBounded := by
|
|||
|
||||
/-- When there is no quartic coupling, the potential is bounded iff the mass squared is
|
||||
non-positive, i.e., for `P : Potential` then `P.IsBounded` iff `P.μ2 ≤ 0`. That is to say
|
||||
`- P.μ2 * ‖φ‖_H^2 x` is bounded below ifff `P.μ2 ≤ 0`.-/
|
||||
`- P.μ2 * ‖φ‖_H^2 x` is bounded below ifff `P.μ2 ≤ 0`. -/
|
||||
informal_lemma isBounded_iff_of_𝓵_zero where
|
||||
deps := [`StandardModel.HiggsField.Potential.IsBounded, `StandardModel.HiggsField.Potential]
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue