refactor: lint
This commit is contained in:
parent
6433259bc4
commit
70f617096b
16 changed files with 103 additions and 87 deletions
|
@ -532,9 +532,9 @@ lemma join_getDual?_apply_uncontractedListEmb_some {φs : List 𝓕.FieldOp}
|
|||
simp
|
||||
|
||||
@[simp]
|
||||
lemma join_getDual?_apply_uncontractedListEmb {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length)
|
||||
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) (i : Fin [φsΛ]ᵘᶜ.length) :
|
||||
((join φsΛ φsucΛ).getDual? (uncontractedListEmd i)) =
|
||||
lemma join_getDual?_apply_uncontractedListEmb {φs : List 𝓕.FieldOp}
|
||||
(φsΛ : WickContraction φs.length) (φsucΛ : WickContraction [φsΛ]ᵘᶜ.length)
|
||||
(i : Fin [φsΛ]ᵘᶜ.length) : ((join φsΛ φsucΛ).getDual? (uncontractedListEmd i)) =
|
||||
Option.map uncontractedListEmd (φsucΛ.getDual? i) := by
|
||||
by_cases h : (φsucΛ.getDual? i).isSome
|
||||
· rw [join_getDual?_apply_uncontractedListEmb_some]
|
||||
|
@ -608,9 +608,8 @@ lemma join_singleton_getDual?_right {φs : List 𝓕.FieldOp}
|
|||
left
|
||||
exact Finset.pair_comm j i
|
||||
|
||||
|
||||
lemma exists_contraction_pair_of_card_ge_zero {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length)
|
||||
(h : 0 < φsΛ.1.card) :
|
||||
lemma exists_contraction_pair_of_card_ge_zero {φs : List 𝓕.FieldOp}
|
||||
(φsΛ : WickContraction φs.length) (h : 0 < φsΛ.1.card) :
|
||||
∃ a, a ∈ φsΛ.1 := by
|
||||
simpa using h
|
||||
|
||||
|
@ -656,5 +655,4 @@ lemma join_not_gradingCompliant_of_left_not_gradingCompliant {φs : List 𝓕.Fi
|
|||
join_sndFieldOfContract_joinLift]
|
||||
exact ha2
|
||||
|
||||
|
||||
end WickContraction
|
||||
|
|
|
@ -158,8 +158,8 @@ lemma signInsertNone_eq_prod_prod (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
|||
erw [hG a]
|
||||
rfl
|
||||
|
||||
lemma sign_insert_none_zero (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) :
|
||||
(φsΛ ↩Λ φ 0 none).sign = φsΛ.sign := by
|
||||
lemma sign_insert_none_zero (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
||||
(φsΛ : WickContraction φs.length) : (φsΛ ↩Λ φ 0 none).sign = φsΛ.sign := by
|
||||
rw [sign_insert_none]
|
||||
simp [signInsertNone]
|
||||
|
||||
|
|
|
@ -19,14 +19,12 @@ variable {n : ℕ} (c : WickContraction n)
|
|||
open HepLean.List
|
||||
open FieldStatistic
|
||||
|
||||
|
||||
/-!
|
||||
|
||||
## Sign insert some
|
||||
|
||||
-/
|
||||
|
||||
|
||||
lemma stat_ofFinset_eq_one_of_gradingCompliant (φs : List 𝓕.FieldOp)
|
||||
(a : Finset (Fin φs.length)) (φsΛ : WickContraction φs.length) (hg : GradingCompliant φs φsΛ)
|
||||
(hnon : ∀ i, φsΛ.getDual? i = none → i ∉ a)
|
||||
|
@ -63,7 +61,6 @@ lemma stat_ofFinset_eq_one_of_gradingCompliant (φs : List 𝓕.FieldOp)
|
|||
exact False.elim (h1 hsom')
|
||||
rfl
|
||||
|
||||
|
||||
lemma signFinset_insertAndContract_some (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
||||
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (i1 i2 : Fin φs.length)
|
||||
(j : φsΛ.uncontracted) :
|
||||
|
|
|
@ -205,10 +205,8 @@ lemma join_singleton_sign_right {φs : List 𝓕.FieldOp}
|
|||
rw [sign_right_eq_prod_mul_prod]
|
||||
rfl
|
||||
|
||||
|
||||
lemma joinSignRightExtra_eq_i_j_finset_eq_if {φs : List 𝓕.FieldOp}
|
||||
{i j : Fin φs.length} (h : i < j)
|
||||
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) :
|
||||
{i j : Fin φs.length} (h : i < j) (φsucΛ : WickContraction [singleton h]ᵘᶜ.length) :
|
||||
joinSignRightExtra h φsucΛ = ∏ a,
|
||||
𝓢((𝓕|>ₛ [singleton h]ᵘᶜ[φsucΛ.sndFieldOfContract a]),
|
||||
𝓕 |>ₛ ⟨φs.get, (if uncontractedListEmd (φsucΛ.fstFieldOfContract a) < j ∧
|
||||
|
@ -303,13 +301,10 @@ lemma joinSignLeftExtra_eq_joinSignRightExtra {φs : List 𝓕.FieldOp}
|
|||
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) :
|
||||
joinSignLeftExtra h φsucΛ = joinSignRightExtra h φsucΛ := by
|
||||
/- Simplifying joinSignLeftExtra. -/
|
||||
rw [joinSignLeftExtra]
|
||||
rw [ofFinset_eq_prod]
|
||||
rw [map_prod]
|
||||
let e2 : Fin φs.length ≃ {x // (((singleton h).join φsucΛ).getDual? x).isSome} ⊕
|
||||
{x // ¬ (((singleton h).join φsucΛ).getDual? x).isSome} := by
|
||||
exact (Equiv.sumCompl fun a => (((singleton h).join φsucΛ).getDual? a).isSome = true).symm
|
||||
rw [← e2.symm.prod_comp]
|
||||
rw [joinSignLeftExtra, ofFinset_eq_prod, map_prod, ← e2.symm.prod_comp]
|
||||
simp only [Fin.getElem_fin, Fintype.prod_sum_type, instCommGroup]
|
||||
conv_lhs =>
|
||||
enter [2, 2, x]
|
||||
|
@ -326,8 +321,7 @@ lemma joinSignLeftExtra_eq_joinSignRightExtra {φs : List 𝓕.FieldOp}
|
|||
enter [2, a]
|
||||
rw [prod_finset_eq_mul_fst_snd]
|
||||
simp [e2, sigmaContractedEquiv]
|
||||
rw [prod_join]
|
||||
rw [singleton_prod]
|
||||
rw [prod_join, singleton_prod]
|
||||
simp only [join_fstFieldOfContract_joinLiftLeft, singleton_fstFieldOfContract,
|
||||
join_sndFieldOfContract_joinLift, singleton_sndFieldOfContract, lt_self_iff_false, and_false,
|
||||
↓reduceIte, map_one, mul_one, join_fstFieldOfContract_joinLiftRight,
|
||||
|
@ -384,17 +378,14 @@ lemma join_sign_singleton {φs : List 𝓕.FieldOp}
|
|||
{i j : Fin φs.length} (h : i < j) (hs : (𝓕 |>ₛ φs[i]) = (𝓕 |>ₛ φs[j]))
|
||||
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) :
|
||||
(join (singleton h) φsucΛ).sign = (singleton h).sign * φsucΛ.sign := by
|
||||
rw [join_singleton_sign_right]
|
||||
rw [join_singleton_sign_left h φsucΛ]
|
||||
rw [join_singleton_sign_right, join_singleton_sign_left h φsucΛ]
|
||||
rw [joinSignLeftExtra_eq_joinSignRightExtra h hs φsucΛ]
|
||||
rw [← mul_assoc]
|
||||
rw [mul_assoc _ _ (joinSignRightExtra h φsucΛ)]
|
||||
rw [← mul_assoc, mul_assoc _ _ (joinSignRightExtra h φsucΛ)]
|
||||
have h1 : (joinSignRightExtra h φsucΛ * joinSignRightExtra h φsucΛ) = 1 := by
|
||||
rw [← joinSignLeftExtra_eq_joinSignRightExtra h hs φsucΛ]
|
||||
simp [joinSignLeftExtra]
|
||||
simp only [instCommGroup, Fin.getElem_fin, h1, mul_one]
|
||||
rw [sign]
|
||||
rw [prod_join]
|
||||
rw [sign, prod_join]
|
||||
congr
|
||||
· rw [singleton_prod]
|
||||
simp
|
||||
|
@ -414,9 +405,7 @@ lemma join_sign_induction {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs
|
|||
| Nat.succ n, hn => by
|
||||
obtain ⟨i, j, hij, φsucΛ', rfl, h1, h2, h3⟩ :=
|
||||
exists_join_singleton_of_card_ge_zero φsΛ (by simp [hn]) hc
|
||||
rw [join_assoc]
|
||||
rw [join_sign_singleton hij h1]
|
||||
rw [join_sign_singleton hij h1]
|
||||
rw [join_assoc, join_sign_singleton hij h1, join_sign_singleton hij h1]
|
||||
have hn : φsucΛ'.1.card = n := by
|
||||
omega
|
||||
rw [join_sign_induction φsucΛ' (congr (by simp [join_uncontractedListGet]) φsucΛ) h2
|
||||
|
|
|
@ -199,8 +199,8 @@ lemma timeOrder_timeContract_mul_of_eqTimeOnly_left {φs : List 𝓕.FieldOp}
|
|||
rw [timeOrder_timeContract_mul_of_eqTimeOnly_mid φsΛ hl]
|
||||
simp
|
||||
|
||||
lemma exists_join_singleton_of_not_eqTimeOnly {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length)
|
||||
(h1 : ¬ φsΛ.EqTimeOnly) :
|
||||
lemma exists_join_singleton_of_not_eqTimeOnly {φs : List 𝓕.FieldOp}
|
||||
(φsΛ : WickContraction φs.length) (h1 : ¬ φsΛ.EqTimeOnly) :
|
||||
∃ (i j : Fin φs.length) (h : i < j) (φsucΛ : WickContraction [singleton h]ᵘᶜ.length),
|
||||
φsΛ = join (singleton h) φsucΛ ∧ (¬ timeOrderRel φs[i] φs[j] ∨ ¬ timeOrderRel φs[j] φs[i]) := by
|
||||
rw [eqTimeOnly_iff_forall_finset] at h1
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue