Merge branch 'master' into SpaceTime/LorentzGroup
This commit is contained in:
commit
7107ba8b80
16 changed files with 36 additions and 34 deletions
1
.github/workflows/build.yml
vendored
1
.github/workflows/build.yml
vendored
|
@ -1,6 +1,7 @@
|
|||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
|
||||
name: continuous integration
|
||||
|
||||
|
|
1
.github/workflows/check_file_import.yml
vendored
1
.github/workflows/check_file_import.yml
vendored
|
@ -1,5 +1,6 @@
|
|||
on:
|
||||
push:
|
||||
pull_request:
|
||||
|
||||
name: check file import
|
||||
|
||||
|
|
|
@ -16,7 +16,7 @@ It defines a module structure on the charges, and the solutions to the linear AC
|
|||
## TODO
|
||||
|
||||
- Derive ACC systems from gauge algebras and fermionic representations.
|
||||
- Relate ACCSystems to algebraic varities.
|
||||
- Relate ACCSystems to algebraic varieties.
|
||||
|
||||
-/
|
||||
|
||||
|
@ -86,7 +86,7 @@ lemma LinSols.ext {χ : ACCSystemLinear} {S T : χ.LinSols} (h : S.val = T.val)
|
|||
cases' S
|
||||
simp_all only
|
||||
|
||||
/-- An instance providng the operations and properties for `LinSols` to form an
|
||||
/-- An instance providing the operations and properties for `LinSols` to form an
|
||||
addative commutative monoid. -/
|
||||
@[simps!]
|
||||
instance linSolsAddCommMonoid (χ : ACCSystemLinear) :
|
||||
|
@ -121,7 +121,7 @@ instance linSolsAddCommMonoid (χ : ACCSystemLinear) :
|
|||
apply LinSols.ext
|
||||
exact χ.chargesAddCommMonoid.nsmul_succ _ _
|
||||
|
||||
/-- An instance providng the operations and properties for `LinSols` to form an
|
||||
/-- An instance providing the operations and properties for `LinSols` to form an
|
||||
module over `ℚ`. -/
|
||||
@[simps!]
|
||||
instance linSolsModule (χ : ACCSystemLinear) : Module ℚ χ.LinSols where
|
||||
|
@ -149,7 +149,7 @@ instance linSolsModule (χ : ACCSystemLinear) : Module ℚ χ.LinSols where
|
|||
exact χ.chargesModule.add_smul _ _ _
|
||||
|
||||
/-- An instance providing the operations and properties for `LinSols` to form an
|
||||
an addative community. -/
|
||||
an additive community. -/
|
||||
instance linSolsAddCommGroup (χ : ACCSystemLinear) : AddCommGroup χ.LinSols :=
|
||||
Module.addCommMonoidToAddCommGroup ℚ
|
||||
|
||||
|
@ -271,7 +271,7 @@ structure Hom (χ η : ACCSystem) where
|
|||
charges : χ.charges →ₗ[ℚ] η.charges
|
||||
/-- The map between solutions. -/
|
||||
anomalyFree : χ.Sols → η.Sols
|
||||
/-- The condition that the map commutes with the relevent inclusions. -/
|
||||
/-- The condition that the map commutes with the relevant inclusions. -/
|
||||
commute : charges ∘ χ.solsIncl = η.solsIncl ∘ anomalyFree
|
||||
|
||||
/-- The definition of composition between two ACCSystems. -/
|
||||
|
|
|
@ -13,7 +13,7 @@ under which the anomaly equations are invariant.
|
|||
|
||||
From this we define
|
||||
- The representation acting on the vector space of solutions to the linear ACCs.
|
||||
- The group action acting on solutions to the linera + quadratic equations.
|
||||
- The group action acting on solutions to the linear + quadratic equations.
|
||||
- The group action acting on solutions to the anomaly cancellation conditions.
|
||||
|
||||
-/
|
||||
|
|
|
@ -34,7 +34,7 @@ def MSSMSpecies : ACCSystemCharges := ACCSystemChargesMk 3
|
|||
namespace MSSMCharges
|
||||
|
||||
/-- An equivalence between `MSSMCharges.charges` and the space of maps
|
||||
`(Fin 18 ⊕ Fin 2 → ℚ)`. The first 18 factors corresponds to the SM fermions, whils the last two
|
||||
`(Fin 18 ⊕ Fin 2 → ℚ)`. The first 18 factors corresponds to the SM fermions, while the last two
|
||||
are the higgsions. -/
|
||||
@[simps!]
|
||||
def toSMPlusH : MSSMCharges.charges ≃ (Fin 18 ⊕ Fin 2 → ℚ) :=
|
||||
|
@ -173,7 +173,7 @@ lemma accGrav_ext {S T : MSSMCharges.charges}
|
|||
rw [hd, hu]
|
||||
rfl
|
||||
|
||||
/-- The anomaly cancelation condition for SU(2) anomaly. -/
|
||||
/-- The anomaly cancellation condition for SU(2) anomaly. -/
|
||||
@[simp]
|
||||
def accSU2 : MSSMCharges.charges →ₗ[ℚ] ℚ where
|
||||
toFun S := ∑ i, (3 * Q S i + L S i) + Hd S + Hu S
|
||||
|
|
|
@ -10,7 +10,7 @@ import Mathlib.Algebra.BigOperators.Fin
|
|||
/-!
|
||||
# Pure U(1) ACC system.
|
||||
|
||||
We define the anomaly cancellation conditions for a pure U(1) gague theory with `n` fermions.
|
||||
We define the anomaly cancellation conditions for a pure U(1) gauge theory with `n` fermions.
|
||||
|
||||
-/
|
||||
universe v u
|
||||
|
|
|
@ -24,7 +24,7 @@ variable {n : ℕ}
|
|||
/-- The condition for two rationals to have the same square (equivalent to same abs). -/
|
||||
def constAbsProp : ℚ × ℚ → Prop := fun s => s.1^2 = s.2^2
|
||||
|
||||
/-- The condition on a charge assigment `S` to have constant absolute value among charges. -/
|
||||
/-- The condition on a charge assignment `S` to have constant absolute value among charges. -/
|
||||
@[simp]
|
||||
def constAbs (S : (PureU1 n).charges) : Prop := ∀ i j, (S i) ^ 2 = (S j) ^ 2
|
||||
|
||||
|
@ -137,7 +137,7 @@ lemma boundary_accGrav'' (k : Fin n) (hk : boundary S k) :
|
|||
rw [boundary_castSucc hS hk, boundary_succ hS hk]
|
||||
ring
|
||||
|
||||
/-- We say a `S ∈ charges` has a boundry if there exists a `k ∈ Fin n` which is a boundary. -/
|
||||
/-- We say a `S ∈ charges` has a boundary if there exists a `k ∈ Fin n` which is a boundary. -/
|
||||
@[simp]
|
||||
def hasBoundary (S : (PureU1 n.succ).charges) : Prop :=
|
||||
∃ (k : Fin n), boundary S k
|
||||
|
|
|
@ -10,7 +10,7 @@ import Mathlib.Logic.Equiv.Fin
|
|||
/-!
|
||||
# Basis of `LinSols` in the even case
|
||||
|
||||
We give a basis of `LinSols` in the even case. This basis has the special propoerty
|
||||
We give a basis of `LinSols` in the even case. This basis has the special property
|
||||
that splits into two planes on which every point is a solution to the ACCs.
|
||||
-/
|
||||
universe v u
|
||||
|
|
|
@ -15,10 +15,10 @@ import Mathlib.Tactic.Polyrith
|
|||
# Line In Cubic Even case
|
||||
|
||||
We say that a linear solution satisfies the `lineInCubic` property
|
||||
if the line through that point and through the two different planes formed by the baisis of
|
||||
if the line through that point and through the two different planes formed by the basis of
|
||||
`LinSols` lies in the cubic.
|
||||
|
||||
We show that for a solution all its permutations satsfiy this property, then there exists
|
||||
We show that for a solution all its permutations satisfy this property, then there exists
|
||||
a permutation for which it lies in the plane spanned by the first part of the basis.
|
||||
|
||||
The main reference for this file is:
|
||||
|
@ -34,7 +34,7 @@ open BigOperators
|
|||
variable {n : ℕ}
|
||||
open VectorLikeEvenPlane
|
||||
|
||||
/-- A property on `LinSols`, statified if every point on the line between the two planes
|
||||
/-- A property on `LinSols`, satisfied if every point on the line between the two planes
|
||||
in the basis through that point is in the cubic. -/
|
||||
def lineInCubic (S : (PureU1 (2 * n.succ)).LinSols) : Prop :=
|
||||
∀ (g : Fin n.succ → ℚ) (f : Fin n → ℚ) (_ : S.val = Pa g f) (a b : ℚ) ,
|
||||
|
|
|
@ -16,7 +16,7 @@ import Mathlib.Tactic.Polyrith
|
|||
|
||||
Given maps `g : Fin n.succ → ℚ`, `f : Fin n → ℚ` and `a : ℚ` we form a solution to the anomaly
|
||||
equations. We show that every solution can be got in this way, up to permutation, unless it, up to
|
||||
permutaiton, lives in the plane spanned by the firt part of the basis vector.
|
||||
permutation, lives in the plane spanned by the first part of the basis vector.
|
||||
|
||||
The main reference is:
|
||||
|
||||
|
@ -32,7 +32,7 @@ open BigOperators
|
|||
variable {n : ℕ}
|
||||
open VectorLikeEvenPlane
|
||||
|
||||
/-- Given coefficents `g` of a point in `P` and `f` of a point in `P!`, and a rational, we get a
|
||||
/-- Given coefficients `g` of a point in `P` and `f` of a point in `P!`, and a rational, we get a
|
||||
rational `a ∈ ℚ`, we get a
|
||||
point in `(PureU1 (2 * n.succ)).AnomalyFreeLinear`, which we will later show extends to an anomaly
|
||||
free point. -/
|
||||
|
|
|
@ -7,7 +7,7 @@ import HepLean.AnomalyCancellation.SM.Basic
|
|||
/-!
|
||||
# Anomaly Cancellation in the Standard Model without Gravity
|
||||
|
||||
This file defines the system of anaomaly equations for the SM without RHN, and
|
||||
This file defines the system of anomaly equations for the SM without RHN, and
|
||||
without the gravitational ACC.
|
||||
|
||||
-/
|
||||
|
|
|
@ -12,7 +12,7 @@ import HepLean.AnomalyCancellation.SM.NoGrav.One.LinearParameterization
|
|||
The main result of this file is the conclusion of this paper:
|
||||
https://arxiv.org/abs/1907.00514
|
||||
|
||||
That eveery solution to the ACCs without gravity satisfies for free the gravitational anomaly.
|
||||
That every solution to the ACCs without gravity satisfies for free the gravitational anomaly.
|
||||
-/
|
||||
|
||||
universe v u
|
||||
|
|
|
@ -46,7 +46,7 @@ lemma ext {S T : linearParameters} (hQ : S.Q' = T.Q') (hY : S.Y = T.Y) (hE : S.E
|
|||
cases' S
|
||||
simp_all only
|
||||
|
||||
/-- The map from the linear paramaters to elements of `(SMNoGrav 1).charges`. -/
|
||||
/-- The map from the linear parameters to elements of `(SMNoGrav 1).charges`. -/
|
||||
@[simp]
|
||||
def asCharges (S : linearParameters) : (SMNoGrav 1).charges := fun i =>
|
||||
match i with
|
||||
|
|
|
@ -11,8 +11,8 @@ This file defines the Gamma matrices.
|
|||
|
||||
## TODO
|
||||
|
||||
- Prove that the algebra generated by the gamma matrices is ismorphic to the
|
||||
Clifford algebra assocaited with spacetime.
|
||||
- Prove that the algebra generated by the gamma matrices is isomorphic to the
|
||||
Clifford algebra associated with spacetime.
|
||||
- Include relations for gamma matrices.
|
||||
-/
|
||||
|
||||
|
|
|
@ -113,7 +113,7 @@ def lorentzGroup : Subgroup (GL (Fin 4) ℝ) where
|
|||
instance : TopologicalGroup lorentzGroup :=
|
||||
Subgroup.instTopologicalGroupSubtypeMem lorentzGroup
|
||||
|
||||
/-- The lift of a matrix perserving `ηLin` to a Lorentz Group element. -/
|
||||
/-- The lift of a matrix preserving `ηLin` to a Lorentz Group element. -/
|
||||
def PreservesηLin.liftLor {Λ : Matrix (Fin 4) (Fin 4) ℝ} (h : PreservesηLin Λ) :
|
||||
lorentzGroup := ⟨liftGL h, h⟩
|
||||
|
||||
|
@ -127,24 +127,24 @@ def transpose (Λ : lorentzGroup) : lorentzGroup :=
|
|||
PreservesηLin.liftLor ((PreservesηLin.iff_transpose Λ.1).mp Λ.2)
|
||||
|
||||
|
||||
/-- The continuous map from `GL (Fin 4) ℝ` to `Matrix (Fin 4) (Fin 4) ℝ` whose kernal is
|
||||
/-- The continuous map from `GL (Fin 4) ℝ` to `Matrix (Fin 4) (Fin 4) ℝ` whose kernel is
|
||||
the Lorentz group. -/
|
||||
def kernalMap : C(GL (Fin 4) ℝ, Matrix (Fin 4) (Fin 4) ℝ) where
|
||||
def kernelMap : C(GL (Fin 4) ℝ, Matrix (Fin 4) (Fin 4) ℝ) where
|
||||
toFun Λ := η * Λ.1ᵀ * η * Λ.1
|
||||
continuous_toFun := by
|
||||
apply Continuous.mul _ Units.continuous_val
|
||||
apply Continuous.mul _ continuous_const
|
||||
exact Continuous.mul continuous_const (Continuous.matrix_transpose (Units.continuous_val))
|
||||
|
||||
lemma kernalMap_kernal_eq_lorentzGroup : lorentzGroup = kernalMap ⁻¹' {1} := by
|
||||
lemma kernelMap_kernel_eq_lorentzGroup : lorentzGroup = kernelMap ⁻¹' {1} := by
|
||||
ext Λ
|
||||
erw [mem_iff Λ, PreservesηLin.iff_matrix]
|
||||
rfl
|
||||
|
||||
/-- The Lorentz Group is a closed subset of `GL (Fin 4) ℝ`. -/
|
||||
theorem isClosed_of_GL4 : IsClosed (lorentzGroup : Set (GL (Fin 4) ℝ)) := by
|
||||
rw [kernalMap_kernal_eq_lorentzGroup]
|
||||
exact continuous_iff_isClosed.mp kernalMap.2 {1} isClosed_singleton
|
||||
rw [kernelMap_kernel_eq_lorentzGroup]
|
||||
exact continuous_iff_isClosed.mp kernelMap.2 {1} isClosed_singleton
|
||||
|
||||
end lorentzGroup
|
||||
|
||||
|
|
|
@ -42,7 +42,7 @@ abbrev higgsVec := EuclideanSpace ℂ (Fin 2)
|
|||
|
||||
section higgsVec
|
||||
|
||||
/-- The continous linear map from the vector space `higgsVec` to `(Fin 2 → ℂ)` acheived by
|
||||
/-- The continuous linear map from the vector space `higgsVec` to `(Fin 2 → ℂ)` achieved by
|
||||
casting vectors. -/
|
||||
def higgsVecToFin2ℂ : higgsVec →L[ℝ] (Fin 2 → ℂ) where
|
||||
toFun x := x
|
||||
|
@ -69,7 +69,7 @@ noncomputable def higgsRepUnitary : gaugeGroup →* unitaryGroup (Fin 2) ℂ whe
|
|||
map_one' := by
|
||||
simp only [Prod.snd_one, _root_.map_one, Prod.fst_one, mul_one]
|
||||
|
||||
/-- An orthonomral basis of higgsVec. -/
|
||||
/-- An orthonormal basis of higgsVec. -/
|
||||
noncomputable def orthonormBasis : OrthonormalBasis (Fin 2) ℂ higgsVec :=
|
||||
EuclideanSpace.basisFun (Fin 2) ℂ
|
||||
|
||||
|
@ -306,8 +306,8 @@ lemma IsMinOn_potential_iff_of_μSq_nonpos {μSq : ℝ} (hμSq : μSq ≤ 0) :
|
|||
exact potential_eq_bound_IsMinOn_of_μSq_nonpos hLam hμSq φ h
|
||||
|
||||
end potentialProp
|
||||
/-- Given a Higgs vector, a rotation matrix which puts the fst component of the
|
||||
vector to zero, and the snd componenet to a real -/
|
||||
/-- Given a Higgs vector, a rotation matrix which puts the first component of the
|
||||
vector to zero, and the second component to a real -/
|
||||
def rotateMatrix (φ : higgsVec) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||||
![![φ 1 /‖φ‖ , - φ 0 /‖φ‖], ![conj (φ 0) / ‖φ‖ , conj (φ 1) / ‖φ‖] ]
|
||||
|
||||
|
@ -353,8 +353,8 @@ lemma rotateMatrix_specialUnitary {φ : higgsVec} (hφ : φ ≠ 0) :
|
|||
(rotateMatrix φ) ∈ specialUnitaryGroup (Fin 2) ℂ :=
|
||||
mem_specialUnitaryGroup_iff.mpr ⟨rotateMatrix_unitary hφ, rotateMatrix_det hφ⟩
|
||||
|
||||
/-- Given a Higgs vector, an element of the gauge group which puts the fst component of the
|
||||
vector to zero, and the snd componenet to a real -/
|
||||
/-- Given a Higgs vector, an element of the gauge group which puts the first component of the
|
||||
vector to zero, and the second component to a real -/
|
||||
def rotateGuageGroup {φ : higgsVec} (hφ : φ ≠ 0) : gaugeGroup :=
|
||||
⟨1, ⟨(rotateMatrix φ), rotateMatrix_specialUnitary hφ⟩, 1⟩
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue