docs: Improve some documentation
This commit is contained in:
parent
a3b6abcf58
commit
710e4f7b22
3 changed files with 67 additions and 8 deletions
|
@ -10,8 +10,10 @@ import Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup
|
|||
/-!
|
||||
# Spacetime as a self-adjoint matrix
|
||||
|
||||
The main result of this file is a linear equivalence `spaceTimeToHerm` between the vector space
|
||||
of space-time points and the vector space of 2×2-complex self-adjoint matrices.
|
||||
There is a linear equivalence between the vector space of space-time points
|
||||
and the vector space of 2×2-complex self-adjoint matrices.
|
||||
|
||||
In this file we define this linear equivalence in `toSelfAdjointMatrix`.
|
||||
|
||||
-/
|
||||
namespace spaceTime
|
||||
|
|
|
@ -37,6 +37,14 @@ open Matrix
|
|||
open Complex
|
||||
open ComplexConjugate
|
||||
|
||||
/-!
|
||||
## Matrices which preserve `ηLin`
|
||||
|
||||
We start studying the properties of matrices which preserve `ηLin`.
|
||||
These matrices form the Lorentz group, which we will define in the next section at `lorentzGroup`.
|
||||
|
||||
-/
|
||||
|
||||
/-- We say a matrix `Λ` preserves `ηLin` if for all `x` and `y`,
|
||||
`ηLin (Λ *ᵥ x) (Λ *ᵥ y) = ηLin x y`. -/
|
||||
def PreservesηLin (Λ : Matrix (Fin 4) (Fin 4) ℝ) : Prop :=
|
||||
|
@ -125,6 +133,14 @@ lemma η : PreservesηLin η := by
|
|||
|
||||
end PreservesηLin
|
||||
|
||||
/-!
|
||||
## The Lorentz group
|
||||
|
||||
We define the Lorentz group as the set of matrices which preserve `ηLin`.
|
||||
We show that the Lorentz group is indeed a group.
|
||||
|
||||
-/
|
||||
|
||||
/-- The Lorentz group is the subset of matrices which preserve ηLin. -/
|
||||
def lorentzGroup : Type := {Λ : Matrix (Fin 4) (Fin 4) ℝ // PreservesηLin Λ}
|
||||
|
||||
|
@ -160,6 +176,19 @@ lemma coe_inv (A : 𝓛) : (A⁻¹).1 = A.1⁻¹:= by
|
|||
refine (inv_eq_left_inv ?h).symm
|
||||
exact (PreservesηLin.iff_matrix A.1).mp A.2
|
||||
|
||||
/-- The transpose of an matrix in the Lorentz group is an element of the Lorentz group. -/
|
||||
def transpose (Λ : lorentzGroup) : lorentzGroup := ⟨Λ.1ᵀ, (PreservesηLin.iff_transpose Λ.1).mp Λ.2⟩
|
||||
|
||||
/-!
|
||||
|
||||
## Lorentz group as a topological group
|
||||
|
||||
We now show that the Lorentz group is a topological group.
|
||||
We do this by showing that the natrual map from the Lorentz group to `GL (Fin 4) ℝ` is an
|
||||
embedding.
|
||||
|
||||
-/
|
||||
|
||||
/-- The homomorphism of the Lorentz group into `GL (Fin 4) ℝ`. -/
|
||||
def toGL : 𝓛 →* GL (Fin 4) ℝ where
|
||||
toFun A := ⟨A.1, (A⁻¹).1, mul_eq_one_comm.mpr $ (PreservesηLin.iff_matrix A.1).mp A.2,
|
||||
|
@ -225,8 +254,6 @@ lemma toGL_embedding : Embedding toGL.toFun where
|
|||
|
||||
instance : TopologicalGroup 𝓛 := Inducing.topologicalGroup toGL toGL_embedding.toInducing
|
||||
|
||||
/-- The transpose of an matrix in the Lorentz group is an element of the Lorentz group. -/
|
||||
def transpose (Λ : lorentzGroup) : lorentzGroup := ⟨Λ.1ᵀ, (PreservesηLin.iff_transpose Λ.1).mp Λ.2⟩
|
||||
|
||||
|
||||
end lorentzGroup
|
||||
|
|
|
@ -10,10 +10,6 @@ import Mathlib.RepresentationTheory.Basic
|
|||
|
||||
The aim of this file is to give the relationship between `SL(2, ℂ)` and the Lorentz group.
|
||||
|
||||
## TODO
|
||||
|
||||
This file is a working progress.
|
||||
|
||||
-/
|
||||
namespace spaceTime
|
||||
|
||||
|
@ -27,6 +23,15 @@ open spaceTime
|
|||
|
||||
noncomputable section
|
||||
|
||||
/-!
|
||||
|
||||
## Representation of SL(2, ℂ) on spacetime
|
||||
|
||||
Through the correspondence between spacetime and self-adjoint matrices,
|
||||
we can define a representation a representation of `SL(2, ℂ)` on spacetime.
|
||||
|
||||
-/
|
||||
|
||||
/-- Given an element `M ∈ SL(2, ℂ)` the linear map from `selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)` to
|
||||
itself defined by `A ↦ M * A * Mᴴ`. -/
|
||||
@[simps!]
|
||||
|
@ -69,6 +74,16 @@ def repSpaceTime : Representation ℝ SL(2, ℂ) spaceTime where
|
|||
ext x : 3
|
||||
simp
|
||||
|
||||
/-!
|
||||
|
||||
## Homomorphism to the Lorentz group
|
||||
|
||||
There is a group homomorphism from `SL(2, ℂ)` to the Lorentz group `𝓛`.
|
||||
The purpose of this section is to define this homomorphism.
|
||||
In the next section we will restrict this homomorphism to the restricted Lorentz group.
|
||||
|
||||
-/
|
||||
|
||||
/-- Given an element `M ∈ SL(2, ℂ)` the corresponding element of the Lorentz group. -/
|
||||
@[simps!]
|
||||
def toLorentzGroupElem (M : SL(2, ℂ)) : 𝓛 :=
|
||||
|
@ -87,6 +102,21 @@ def toLorentzGroup : SL(2, ℂ) →* 𝓛 where
|
|||
simp only [toLorentzGroupElem, _root_.map_mul, LinearMap.toMatrix_mul,
|
||||
lorentzGroupIsGroup_mul_coe]
|
||||
|
||||
/-!
|
||||
|
||||
## Homomorphism to the restricted Lorentz group
|
||||
|
||||
The homomorphism `toLorentzGroup` restricts to a homomorphism to the restricted Lorentz group.
|
||||
In this section we will define this homomorphism.
|
||||
|
||||
### TODO
|
||||
|
||||
Complete this section.
|
||||
|
||||
-/
|
||||
|
||||
|
||||
|
||||
end
|
||||
end SL2C
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue