feat: Reorder TensorSpecies
This commit is contained in:
parent
82df8eed80
commit
72a468333b
1 changed files with 23 additions and 23 deletions
|
@ -40,29 +40,19 @@ open MonoidalCategory
|
|||
/-- The sturcture of a type of tensors e.g. Lorentz tensors, Einstien tensors,
|
||||
complex Lorentz tensors. -/
|
||||
structure TensorSpecies where
|
||||
/-- The colors of indices e.g. up or down. -/
|
||||
C : Type
|
||||
/-- The symmetry group acting on these tensor e.g. the Lorentz group or SL(2,ℂ). -/
|
||||
G : Type
|
||||
/-- An instance of `G` as a group. -/
|
||||
G_group : Group G
|
||||
/-- The field over which we want to consider the tensors to live in, usually `ℝ` or `ℂ`. -/
|
||||
k : Type
|
||||
/-- An instance of `k` as a commutative ring. -/
|
||||
k_commRing : CommRing k
|
||||
/-- The symmetry group acting on these tensor e.g. the Lorentz group or SL(2,ℂ). -/
|
||||
G : Type
|
||||
/-- An instance of `G` as a group. -/
|
||||
G_group : Group G
|
||||
/-- The colors of indices e.g. up or down. -/
|
||||
C : Type
|
||||
/-- A `MonoidalFunctor` from `OverColor C` giving the rep corresponding to a map of colors
|
||||
`X → C`. -/
|
||||
FDiscrete : Discrete C ⥤ Rep k G
|
||||
/-- A map from `C` to `C`. An involution. -/
|
||||
τ : C → C
|
||||
/-- The condition that `τ` is an involution. -/
|
||||
τ_involution : Function.Involutive τ
|
||||
/-- The natural transformation describing contraction. -/
|
||||
contr : OverColor.Discrete.pairτ FDiscrete τ ⟶ 𝟙_ (Discrete C ⥤ Rep k G)
|
||||
/-- The natural transformation describing the metric. -/
|
||||
metric : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.pair FDiscrete
|
||||
/-- The natural transformation describing the unit. -/
|
||||
unit : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.τPair FDiscrete τ
|
||||
/-- A specification of the dimension of each color in C. This will be used for explicit
|
||||
evaluation of tensors. -/
|
||||
repDim : C → ℕ
|
||||
|
@ -70,17 +60,19 @@ structure TensorSpecies where
|
|||
repDim_neZero (c : C) : NeZero (repDim c)
|
||||
/-- A basis for each Module, determined by the evaluation map. -/
|
||||
basis : (c : C) → Basis (Fin (repDim c)) k (FDiscrete.obj (Discrete.mk c)).V
|
||||
/-- A map from `C` to `C`. An involution. -/
|
||||
τ : C → C
|
||||
/-- The condition that `τ` is an involution. -/
|
||||
τ_involution : Function.Involutive τ
|
||||
/-- The natural transformation describing contraction. -/
|
||||
contr : OverColor.Discrete.pairτ FDiscrete τ ⟶ 𝟙_ (Discrete C ⥤ Rep k G)
|
||||
/-- Contraction is symmetric with respect to duals. -/
|
||||
contr_tmul_symm (c : C) (x : FDiscrete.obj (Discrete.mk c))
|
||||
(y : FDiscrete.obj (Discrete.mk (τ c))) :
|
||||
(contr.app (Discrete.mk c)).hom (x ⊗ₜ[k] y) = (contr.app (Discrete.mk (τ c))).hom
|
||||
(y ⊗ₜ (FDiscrete.map (Discrete.eqToHom (τ_involution c).symm)).hom x)
|
||||
/-- Contraction with unit leaves invariant. -/
|
||||
contr_unit (c : C) (x : FDiscrete.obj (Discrete.mk (c))) :
|
||||
(λ_ (FDiscrete.obj (Discrete.mk (c)))).hom.hom
|
||||
(((contr.app (Discrete.mk c)) ▷ (FDiscrete.obj (Discrete.mk (c)))).hom
|
||||
((α_ _ _ (FDiscrete.obj (Discrete.mk (c)))).inv.hom
|
||||
(x ⊗ₜ[k] (unit.app (Discrete.mk c)).hom (1 : k)))) = x
|
||||
(y ⊗ₜ (FDiscrete.map (Discrete.eqToHom (τ_involution c).symm)).hom x)
|
||||
/-- The natural transformation describing the unit. -/
|
||||
unit : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.τPair FDiscrete τ
|
||||
/-- The unit is symmetric. -/
|
||||
unit_symm (c : C) :
|
||||
((unit.app (Discrete.mk c)).hom (1 : k)) =
|
||||
|
@ -88,6 +80,14 @@ structure TensorSpecies where
|
|||
(FDiscrete.map (Discrete.eqToHom (τ_involution c)))).hom
|
||||
((β_ (FDiscrete.obj (Discrete.mk (τ (τ c)))) (FDiscrete.obj (Discrete.mk (τ (c))))).hom.hom
|
||||
((unit.app (Discrete.mk (τ c))).hom (1 : k)))
|
||||
/-- Contraction with unit leaves invariant. -/
|
||||
contr_unit (c : C) (x : FDiscrete.obj (Discrete.mk (c))) :
|
||||
(λ_ (FDiscrete.obj (Discrete.mk (c)))).hom.hom
|
||||
(((contr.app (Discrete.mk c)) ▷ (FDiscrete.obj (Discrete.mk (c)))).hom
|
||||
((α_ _ _ (FDiscrete.obj (Discrete.mk (c)))).inv.hom
|
||||
(x ⊗ₜ[k] (unit.app (Discrete.mk c)).hom (1 : k)))) = x
|
||||
/-- The natural transformation describing the metric. -/
|
||||
metric : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.pair FDiscrete
|
||||
/-- On contracting metrics we get back the unit. -/
|
||||
contr_metric (c : C) :
|
||||
(β_ (FDiscrete.obj (Discrete.mk c)) (FDiscrete.obj (Discrete.mk (τ c)))).hom.hom
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue