feat: Permutation and contraction commute

This commit is contained in:
jstoobysmith 2024-10-18 09:46:27 +00:00
parent d542ae3903
commit 7358807980
3 changed files with 311 additions and 40 deletions

View file

@ -104,13 +104,16 @@ lemma pairIsoSep_tmul {c1 c2 : C} (x : F.obj (Discrete.mk c1)) (y : F.obj (Discr
/-- The functor taking `c` to `F c ⊗ F (τ c)`. -/
def pairτ (τ : C → C) : Discrete C ⥤ Rep k G :=
F ⊗ ((Discrete.functor (Discrete.mk ∘ τ) : Discrete C ⥤ Discrete C) ⋙ F)
lemma pairτ_tmul {c : C} (x : F.obj (Discrete.mk c)) (y : ↑(((Action.functorCategoryEquivalence (ModuleCat k) (MonCat.of G)).symm.inverse.obj
((Discrete.functor (Discrete.mk ∘ τ) ⋙ F).obj { as := c })).obj
PUnit.unit)) (h : c = c1):
((pairτ F τ).map (Discrete.eqToHom h)).hom (x ⊗ₜ[k] y)=
((F.map (Discrete.eqToHom h)).hom x) ⊗ₜ[k] ((F.map (Discrete.eqToHom (by simp [h] ))).hom y) := by
rfl
/-- The functor taking `c` to `F (τ c) ⊗ F c`. -/
def τPair (τ : C → C) : Discrete C ⥤ Rep k G :=
((Discrete.functor (Discrete.mk ∘ τ) : Discrete C ⥤ Discrete C) ⋙ F) ⊗ F

View file

@ -41,6 +41,15 @@ def mkSum (c : X ⊕ Y → C) : mk c ≅ mk (c ∘ Sum.inl) ⊗ mk (c ∘ Sum.in
| Sum.inl x => rfl
| Sum.inr x => rfl))
@[simp]
lemma mkSum_homToEquiv {c : X ⊕ Y → C}:
Hom.toEquiv (mkSum c).hom = (Equiv.refl _) := by
rfl
@[simp]
lemma mkSum_inv_homToEquiv {c : X ⊕ Y → C}:
Hom.toEquiv (mkSum c).inv = (Equiv.refl _) := by
rfl
/-- The isomorphism between objects in `OverColor C` given equality of maps. -/
def mkIso {c1 c2 : X → C} (h : c1 = c2) : mk c1 ≅ mk c2 :=
Hom.toIso (Over.isoMk (Equiv.refl _).toIso (by

View file

@ -67,17 +67,12 @@ def metric (c : S.C) : S.F.obj (OverColor.mk ![c, c]) :=
(S.metricNat.app (Discrete.mk c)).hom (1 : S.k)
-/
/-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ.succ` and
a `j` in `Fin n.succ` allowing us to undertake contraction. -/
def contrIso {n : } (c : Fin n.succ.succ → S.C)
/-- The isomorphism between the image of a map `Fin 1 ⊕ Fin 1 → S.C` contructed by `finExtractTwo`
under `S.F.obj`, and an object in the image of `OverColor.Discrete.pairτ S.FDiscrete`. -/
def contrFin1Fin1 {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
S.F.obj (OverColor.mk c) ≅ ((OverColor.Discrete.pairτ S.FDiscrete S.τ).obj
(Discrete.mk (c i))) ⊗
(OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
(S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractTwo i j))).trans <|
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractTwo i j).symm))).trans <|
(S.F.μIso _ _).symm.trans <| by
refine tensorIso ?_ (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
S.F.obj (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) ≅
(OverColor.Discrete.pairτ S.FDiscrete S.τ).obj { as := c i } := by
apply (S.F.mapIso (OverColor.mkSum (((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)))).trans
apply (S.F.μIso _ _).symm.trans
apply tensorIso ?_ ?_
@ -96,6 +91,72 @@ def contrIso {n : } (c : Fin n.succ.succ → S.C)
fin_cases x
simp [h]
lemma contrFin1Fin1_inv_tmul {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
(x : S.FDiscrete.obj { as := c i })
(y : S.FDiscrete.obj { as := S.τ (c i) }) :
(S.contrFin1Fin1 c i j h).inv.hom (x ⊗ₜ[S.k] y) =
PiTensorProduct.tprod S.k (fun k =>
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FDiscrete.map
(eqToHom (by simp [h]))).hom y) := by
simp [contrFin1Fin1]
change (S.F.map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
((S.F.map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
((S.F.μ (OverColor.mk fun x => c i) (OverColor.mk fun x => S.τ (c i))).hom
((((OverColor.forgetLiftApp S.FDiscrete (c i)).inv.hom x) ⊗ₜ[S.k]
((OverColor.forgetLiftApp S.FDiscrete (S.τ (c i))).inv.hom y))))) = _
simp [OverColor.forgetLiftApp]
erw [OverColor.forgetLiftAppV_symm_apply, OverColor.forgetLiftAppV_symm_apply S.FDiscrete (S.τ (c i))]
change ((OverColor.lift.obj S.FDiscrete).map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
(((OverColor.lift.obj S.FDiscrete).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
(((OverColor.lift.obj S.FDiscrete).μ (OverColor.mk fun x => c i) (OverColor.mk fun x => S.τ (c i))).hom
(((PiTensorProduct.tprod S.k) fun x_1 => x) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun x => y))) = _
rw [OverColor.lift.obj_μ_tprod_tmul S.FDiscrete]
change ((OverColor.lift.obj S.FDiscrete).map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
(((OverColor.lift.obj S.FDiscrete).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
((PiTensorProduct.tprod S.k) _)) = _
rw [OverColor.lift.map_tprod S.FDiscrete]
change ((OverColor.lift.obj S.FDiscrete).map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
((PiTensorProduct.tprod S.k _)) = _
rw [OverColor.lift.map_tprod S.FDiscrete]
apply congrArg
funext r
match r with
| Sum.inl 0 =>
simp [OverColor.lift.discreteSumEquiv, HepLean.PiTensorProduct.elimPureTensor]
simp [OverColor.lift.discreteFunctorMapEqIso]
rfl
| Sum.inr 0 =>
simp [OverColor.lift.discreteFunctorMapEqIso, OverColor.lift.discreteSumEquiv, HepLean.PiTensorProduct.elimPureTensor]
rfl
lemma contrFin1Fin1_inv_tmul' {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
(x : ↑(((Action.functorCategoryEquivalence (ModuleCat S.k) (MonCat.of S.G)).symm.inverse.obj
(S.FDiscrete.obj { as := c ( i) })).obj
PUnit.unit))
(y : ↑(((Action.functorCategoryEquivalence (ModuleCat S.k) (MonCat.of S.G)).symm.inverse.obj
((Discrete.functor (Discrete.mk ∘ S.τ) ⋙ S.FDiscrete).obj { as := c ( i) })).obj
PUnit.unit)) :
(S.contrFin1Fin1 c i j h).inv.hom (x ⊗ₜ[S.k] y) =
PiTensorProduct.tprod S.k (fun k =>
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FDiscrete.map
(eqToHom (by simp [h]))).hom y) := by
exact contrFin1Fin1_inv_tmul S c i j h x y
/-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ.succ` and
a `j` in `Fin n.succ` allowing us to undertake contraction. -/
def contrIso {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
S.F.obj (OverColor.mk c) ≅ ((OverColor.Discrete.pairτ S.FDiscrete S.τ).obj
(Discrete.mk (c i))) ⊗
(OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
(S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractTwo i j))).trans <|
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractTwo i j).symm))).trans <|
(S.F.μIso _ _).symm.trans <| by
refine tensorIso (S.contrFin1Fin1 c i j h) (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
open OverColor
lemma perm_contr_cond {n : } {c : Fin n.succ.succ.succ → S.C} {c1 : Fin n.succ.succ.succ → S.C}
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ}
@ -116,6 +177,165 @@ lemma perm_contr_cond {n : } {c : Fin n.succ.succ.succ → S.C} {c1 : Fin n.s
erw [Equiv.apply_eq_iff_eq]
exact (Fin.succAbove_ne i j).symm
lemma contrIso_comm_aux_1 {n : } {c c1 : Fin n.succ.succ.succ → S.C}
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ}
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
((S.F.map σ).hom ≫ (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom) ≫
(S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom =
(S.F.map (equivToIso (HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom).hom ≫ (S.F.map
(mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)).symm)).hom).hom
≫ (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom
:= by
ext X
change ((S.F.map σ) ≫ (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom) ≫ (S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom)).hom X = _
rw [← Functor.map_comp, ← Functor.map_comp]
erw [extractTwo_finExtractTwo]
simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Functor.map_comp, Action.comp_hom,
ModuleCat.coe_comp, Function.comp_apply]
rfl
lemma contrIso_comm_aux_2 {n : } {c c1 : Fin n.succ.succ.succ → S.C}
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ}
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
(S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom ≫
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom =
(S.F.μIso _ _).inv.hom ≫ (S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)).hom
:= by
have h1 : (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)) ≫
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv =
(S.F.μIso _ _).inv ≫ (S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)) := by
erw [CategoryTheory.IsIso.comp_inv_eq, CategoryTheory.Category.assoc]
erw [CategoryTheory.IsIso.eq_inv_comp ]
exact Eq.symm
(LaxMonoidalFunctor.μ_natural S.F.toLaxMonoidalFunctor (extractTwoAux' i j σ)
(extractTwoAux i j σ))
exact congrArg (λ f => Action.Hom.hom f) h1
lemma contrIso_comm_aux_3 {n : } {c c1 : Fin n.succ.succ.succ → S.C}
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ}
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
((Action.functorCategoryEquivalence (ModuleCat S.k) (MonCat.of S.G)).symm.inverse.map
(S.F.map (extractTwoAux i j σ))).app
PUnit.unit ≫
(S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom
= (S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j) )).hom).hom ≫
(S.F.map (extractTwo i j σ)).hom := by
change (S.F.map (extractTwoAux i j σ)).hom ≫ _ = _
have h1 : (S.F.map (extractTwoAux i j σ)) ≫ (S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom) =
(S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j) )).hom) ≫ (S.F.map (extractTwo i j σ)) := by
rw [← Functor.map_comp, ← Functor.map_comp]
apply congrArg
rfl
exact congrArg (λ f => Action.Hom.hom f) h1
lemma contrFin1Fin1_naturality {n : } {c c1 : Fin n.succ.succ.succ → S.C}
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ} (h : c1 (i.succAbove j) = S.τ (c1 i))
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
(S.F.map (extractTwoAux' i j σ)).hom ≫ (S.contrFin1Fin1 c1 i j h).hom.hom
= (S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
(perm_contr_cond S h σ)).hom.hom
≫ ((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i)
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)) )).hom
:= by
have h1 : (S.F.map (extractTwoAux' i j σ)) ≫ (S.contrFin1Fin1 c1 i j h).hom
= (S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
(perm_contr_cond S h σ)).hom
≫ ((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i)
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)) )) := by
erw [← CategoryTheory.Iso.eq_comp_inv ]
rw [CategoryTheory.Category.assoc]
erw [← CategoryTheory.Iso.inv_comp_eq ]
ext1
apply TensorProduct.ext'
intro x y
simp only [Nat.succ_eq_add_one, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
Functor.comp_obj, Discrete.functor_obj_eq_as, Function.comp_apply, CategoryStruct.comp,
extractOne_homToEquiv, Action.Hom.comp_hom, LinearMap.coe_comp]
trans (S.F.map (extractTwoAux' i j σ)).hom (PiTensorProduct.tprod S.k (fun k =>
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FDiscrete.map
(eqToHom (by simp; erw [perm_contr_cond S h σ]))).hom y) )
· apply congrArg
have h1' {α :Type} {a b c d : α} (hab : a= b) (hcd : c =d ) (h : a = d) : b = c := by
rw [← hab, hcd]
exact h
have h1 := S.contrFin1Fin1_inv_tmul c ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
(perm_contr_cond S h σ ) x y
refine h1' ?_ ?_ h1
congr
apply congrArg
funext x
match x with
| Sum.inl 0 => rfl
| Sum.inr 0 => rfl
change _ = (S.contrFin1Fin1 c1 i j h).inv.hom
((S.FDiscrete.map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i))).hom x ⊗ₜ[S.k]
(S.FDiscrete.map (Discrete.eqToHom (congrArg S.τ (Hom.toEquiv_comp_inv_apply σ i)))).hom y)
rw [contrFin1Fin1_inv_tmul]
change ((lift.obj S.FDiscrete).map (extractTwoAux' i j σ)).hom _ = _
rw [lift.map_tprod]
apply congrArg
funext i
match i with
| Sum.inl 0 => rfl
| Sum.inr 0 =>
simp [lift.discreteFunctorMapEqIso]
change ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y = ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y
rw [← Functor.map_comp, ← Functor.map_comp]
simp only [Fin.isValue, Nat.succ_eq_add_one, Discrete.functor_obj_eq_as, Function.comp_apply,
eqToHom_trans]
exact congrArg (λ f => Action.Hom.hom f) h1
def contrIsoComm {n : } {c c1 : Fin n.succ.succ.succ → S.C}
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ}
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :=
(((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i)
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)) )) ⊗ (S.F.map (extractTwo i j σ)))
lemma contrIso_comm_aux_5 {n : } {c c1 : Fin n.succ.succ.succ → S.C}
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ} (h : c1 (i.succAbove j) = S.τ (c1 i))
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
(S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)).hom ≫
((S.contrFin1Fin1 c1 i j h).hom.hom ⊗ (S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom)
= ((S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
(perm_contr_cond S h σ)).hom.hom ⊗ (S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j) )).hom).hom)
≫ (S.contrIsoComm σ).hom
:= by
erw [← CategoryTheory.MonoidalCategory.tensor_comp (f₁ := (S.F.map (extractTwoAux' i j σ)).hom)]
rw [contrIso_comm_aux_3 S σ]
rw [contrFin1Fin1_naturality S h σ]
simp [contrIsoComm]
lemma contrIso_hom_hom {n : } {c1 : Fin n.succ.succ.succ → S.C}
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ}
{h : c1 (i.succAbove j) = S.τ (c1 i)} :
(S.contrIso c1 i j h).hom.hom =
(S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ≫
(S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom ≫
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom ≫
((S.contrFin1Fin1 c1 i j h).hom.hom ⊗ (S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom)
:= by
rw [contrIso]
simp [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Action.comp_hom,
extractOne_homToEquiv, Action.instMonoidalCategory_tensorHom_hom]
open OverColor in
lemma contrIso_comm_map {n : } {c c1 : Fin n.succ.succ.succ → S.C}
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ}
@ -124,23 +344,28 @@ lemma contrIso_comm_map {n : } {c c1 : Fin n.succ.succ.succ → S.C}
(S.F.map σ) ≫ (S.contrIso c1 i j h).hom =
(S.contrIso c ((OverColor.Hom.toEquiv σ).symm i)
(((Hom.toEquiv (extractOne i σ))).symm j) (S.perm_contr_cond h σ)).hom ≫
(((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i)
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)) )) ⊗ (S.F.map (extractTwo i j σ))) := by
ext Z
simp
rw [contrIso]
simp
have h1 : ((S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom ((S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ((S.F.map σ).hom Z)))
= ((S.F.map σ) ≫ (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom) ≫ (S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom)).hom Z := by
rfl
have h1' : ((S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom ((S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ((S.F.map σ).hom Z)))
= ((S.F.map (σ ≫ (equivToIso (HepLean.Fin.finExtractTwo i j)).hom ≫ (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom))).hom Z := by
rw [h1]
simp
rw [h1']
rw [extractTwo_finExtractTwo]
simp
sorry
contrIsoComm S σ := by
ext1
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Action.comp_hom,
extractOne_homToEquiv, Action.instMonoidalCategory_tensorHom_hom]
rw [contrIso_hom_hom]
rw [← CategoryTheory.Category.assoc, ← CategoryTheory.Category.assoc, ← CategoryTheory.Category.assoc ]
rw [contrIso_comm_aux_1 S σ]
rw [CategoryTheory.Category.assoc, CategoryTheory.Category.assoc, CategoryTheory.Category.assoc]
rw [← CategoryTheory.Category.assoc (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom]
rw [contrIso_comm_aux_2 S σ]
simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Action.instMonoidalCategory_tensorObj_V,
Action.instMonoidalCategory_tensorHom_hom, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
contrIso, Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom, tensorIso_hom, Action.comp_hom,
Category.assoc]
apply congrArg
apply congrArg
apply congrArg
simpa only [Nat.succ_eq_add_one, extractOne_homToEquiv, Action.instMonoidalCategory_tensorObj_V,
Action.instMonoidalCategory_tensorHom_hom, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj] using contrIso_comm_aux_5 S h σ
/--
`contrMap` is a function that takes a natural number `n`, a function `c` from
@ -156,6 +381,41 @@ def contrMap {n : } (c : Fin n.succ.succ → S.C)
(tensorHom (S.contr.app (Discrete.mk (c i))) (𝟙 _)) ≫
(MonoidalCategory.leftUnitor _).hom
lemma contrMap_naturality {n : } {c c1 : Fin n.succ.succ.succ → S.C}
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)}
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
(S.F.map σ) ≫ (S.contrMap c1 i j h) =
(S.contrMap c ((OverColor.Hom.toEquiv σ).symm i)
(((Hom.toEquiv (extractOne i σ))).symm j) (S.perm_contr_cond h σ)) ≫
(S.F.map (extractTwo i j σ)) := by
change (S.F.map σ) ≫ ((S.contrIso c1 i j h).hom ≫
(tensorHom (S.contr.app (Discrete.mk (c1 i))) (𝟙 _)) ≫
(MonoidalCategory.leftUnitor _).hom) =
((S.contrIso _ _ _ _).hom ≫
(tensorHom (S.contr.app (Discrete.mk _)) (𝟙 _)) ≫ (MonoidalCategory.leftUnitor _).hom) ≫ _
rw [← CategoryTheory.Category.assoc]
rw [contrIso_comm_map S σ]
repeat rw [CategoryTheory.Category.assoc]
rw [← CategoryTheory.Category.assoc (S.contrIsoComm σ)]
apply congrArg
rw [← leftUnitor_naturality]
repeat rw [← CategoryTheory.Category.assoc]
apply congrFun
apply congrArg
rw [contrIsoComm]
rw [← tensor_comp]
have h1 : 𝟙_ (Rep S.k S.G) ◁ S.F.map (extractTwo i j σ) = 𝟙 _ ⊗ S.F.map (extractTwo i j σ) := by
rfl
rw [h1, ← tensor_comp]
erw [CategoryTheory.Category.id_comp, CategoryTheory.Category.comp_id]
erw [CategoryTheory.Category.comp_id]
rw [S.contr.naturality]
simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Monoidal.tensorUnit_obj,
Monoidal.tensorUnit_map, Category.comp_id]
end TensorStruct
/-- A syntax tree for tensor expressions. -/
@ -360,20 +620,19 @@ lemma neg_perm {n m : } {c : Fin n → S.C} {c1 : Fin m → S.C}
-/
open OverColor
lemma perm_contr {n : } {c : Fin n.succ.succ.succ → S.C} {c1 : Fin n.succ.succ.succ → S.C}
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ}
{h : c1 (i.succAbove j) = S.τ (c1 i)} (t : TensorTree S c)
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
((contr i j h (perm σ t))).tensor
= (perm (extractTwo i j σ) (contr ((OverColor.Hom.toEquiv σ).symm i)
(((Hom.toEquiv (extractOne i σ))).symm j) (perm_contr_cond h σ) t)).tensor := by
rw [contr_tensor, perm_tensor]
rw [TensorStruct.contrMap]
change (
(S.contr.app { as := c1 i } ⊗
𝟙 ((OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c1 ∘ i.succAbove ∘ j.succAbove)))) ≫
(λ_ ((OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c1 ∘ i.succAbove ∘ j.succAbove)))).hom).hom
((S.contrIso c1 i j h).hom.hom ((S.F.map σ).hom t.tensor)) = _
(contr i j h (perm σ t)).tensor
= (perm (extractTwo i j σ) (contr ((Hom.toEquiv σ).symm i)
(((Hom.toEquiv (extractOne i σ))).symm j) (S.perm_contr_cond h σ) t)).tensor := by
rw [contr_tensor, perm_tensor, perm_tensor]
change ((S.F.map σ) ≫ S.contrMap c1 i j h).hom t.tensor = _
rw [S.contrMap_naturality σ]
rfl
end