feat: Permutation and contraction commute
This commit is contained in:
parent
d542ae3903
commit
7358807980
3 changed files with 311 additions and 40 deletions
|
@ -104,13 +104,16 @@ lemma pairIsoSep_tmul {c1 c2 : C} (x : F.obj (Discrete.mk c1)) (y : F.obj (Discr
|
|||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/-- The functor taking `c` to `F c ⊗ F (τ c)`. -/
|
||||
def pairτ (τ : C → C) : Discrete C ⥤ Rep k G :=
|
||||
F ⊗ ((Discrete.functor (Discrete.mk ∘ τ) : Discrete C ⥤ Discrete C) ⋙ F)
|
||||
|
||||
lemma pairτ_tmul {c : C} (x : F.obj (Discrete.mk c)) (y : ↑(((Action.functorCategoryEquivalence (ModuleCat k) (MonCat.of G)).symm.inverse.obj
|
||||
((Discrete.functor (Discrete.mk ∘ τ) ⋙ F).obj { as := c })).obj
|
||||
PUnit.unit)) (h : c = c1):
|
||||
((pairτ F τ).map (Discrete.eqToHom h)).hom (x ⊗ₜ[k] y)=
|
||||
((F.map (Discrete.eqToHom h)).hom x) ⊗ₜ[k] ((F.map (Discrete.eqToHom (by simp [h] ))).hom y) := by
|
||||
rfl
|
||||
/-- The functor taking `c` to `F (τ c) ⊗ F c`. -/
|
||||
def τPair (τ : C → C) : Discrete C ⥤ Rep k G :=
|
||||
((Discrete.functor (Discrete.mk ∘ τ) : Discrete C ⥤ Discrete C) ⋙ F) ⊗ F
|
||||
|
|
|
@ -41,6 +41,15 @@ def mkSum (c : X ⊕ Y → C) : mk c ≅ mk (c ∘ Sum.inl) ⊗ mk (c ∘ Sum.in
|
|||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl))
|
||||
|
||||
@[simp]
|
||||
lemma mkSum_homToEquiv {c : X ⊕ Y → C}:
|
||||
Hom.toEquiv (mkSum c).hom = (Equiv.refl _) := by
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma mkSum_inv_homToEquiv {c : X ⊕ Y → C}:
|
||||
Hom.toEquiv (mkSum c).inv = (Equiv.refl _) := by
|
||||
rfl
|
||||
/-- The isomorphism between objects in `OverColor C` given equality of maps. -/
|
||||
def mkIso {c1 c2 : X → C} (h : c1 = c2) : mk c1 ≅ mk c2 :=
|
||||
Hom.toIso (Over.isoMk (Equiv.refl _).toIso (by
|
||||
|
|
|
@ -67,17 +67,12 @@ def metric (c : S.C) : S.F.obj (OverColor.mk ![c, c]) :=
|
|||
(S.metricNat.app (Discrete.mk c)).hom (1 : S.k)
|
||||
-/
|
||||
|
||||
/-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ.succ` and
|
||||
a `j` in `Fin n.succ` allowing us to undertake contraction. -/
|
||||
def contrIso {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
/-- The isomorphism between the image of a map `Fin 1 ⊕ Fin 1 → S.C` contructed by `finExtractTwo`
|
||||
under `S.F.obj`, and an object in the image of `OverColor.Discrete.pairτ S.FDiscrete`. -/
|
||||
def contrFin1Fin1 {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
|
||||
S.F.obj (OverColor.mk c) ≅ ((OverColor.Discrete.pairτ S.FDiscrete S.τ).obj
|
||||
(Discrete.mk (c i))) ⊗
|
||||
(OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
|
||||
(S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractTwo i j))).trans <|
|
||||
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractTwo i j).symm))).trans <|
|
||||
(S.F.μIso _ _).symm.trans <| by
|
||||
refine tensorIso ?_ (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
|
||||
S.F.obj (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) ≅
|
||||
(OverColor.Discrete.pairτ S.FDiscrete S.τ).obj { as := c i } := by
|
||||
apply (S.F.mapIso (OverColor.mkSum (((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)))).trans
|
||||
apply (S.F.μIso _ _).symm.trans
|
||||
apply tensorIso ?_ ?_
|
||||
|
@ -96,6 +91,72 @@ def contrIso {n : ℕ} (c : Fin n.succ.succ → S.C)
|
|||
fin_cases x
|
||||
simp [h]
|
||||
|
||||
lemma contrFin1Fin1_inv_tmul {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
|
||||
(x : S.FDiscrete.obj { as := c i })
|
||||
(y : S.FDiscrete.obj { as := S.τ (c i) }) :
|
||||
(S.contrFin1Fin1 c i j h).inv.hom (x ⊗ₜ[S.k] y) =
|
||||
PiTensorProduct.tprod S.k (fun k =>
|
||||
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FDiscrete.map
|
||||
(eqToHom (by simp [h]))).hom y) := by
|
||||
simp [contrFin1Fin1]
|
||||
change (S.F.map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
((S.F.map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
||||
((S.F.μ (OverColor.mk fun x => c i) (OverColor.mk fun x => S.τ (c i))).hom
|
||||
((((OverColor.forgetLiftApp S.FDiscrete (c i)).inv.hom x) ⊗ₜ[S.k]
|
||||
((OverColor.forgetLiftApp S.FDiscrete (S.τ (c i))).inv.hom y))))) = _
|
||||
simp [OverColor.forgetLiftApp]
|
||||
erw [OverColor.forgetLiftAppV_symm_apply, OverColor.forgetLiftAppV_symm_apply S.FDiscrete (S.τ (c i))]
|
||||
change ((OverColor.lift.obj S.FDiscrete).map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
(((OverColor.lift.obj S.FDiscrete).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
||||
(((OverColor.lift.obj S.FDiscrete).μ (OverColor.mk fun x => c i) (OverColor.mk fun x => S.τ (c i))).hom
|
||||
(((PiTensorProduct.tprod S.k) fun x_1 => x) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun x => y))) = _
|
||||
rw [OverColor.lift.obj_μ_tprod_tmul S.FDiscrete]
|
||||
change ((OverColor.lift.obj S.FDiscrete).map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
(((OverColor.lift.obj S.FDiscrete).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
||||
((PiTensorProduct.tprod S.k) _)) = _
|
||||
rw [OverColor.lift.map_tprod S.FDiscrete]
|
||||
change ((OverColor.lift.obj S.FDiscrete).map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
((PiTensorProduct.tprod S.k _)) = _
|
||||
rw [OverColor.lift.map_tprod S.FDiscrete]
|
||||
apply congrArg
|
||||
funext r
|
||||
match r with
|
||||
| Sum.inl 0 =>
|
||||
simp [OverColor.lift.discreteSumEquiv, HepLean.PiTensorProduct.elimPureTensor]
|
||||
simp [OverColor.lift.discreteFunctorMapEqIso]
|
||||
rfl
|
||||
| Sum.inr 0 =>
|
||||
simp [OverColor.lift.discreteFunctorMapEqIso, OverColor.lift.discreteSumEquiv, HepLean.PiTensorProduct.elimPureTensor]
|
||||
rfl
|
||||
|
||||
|
||||
lemma contrFin1Fin1_inv_tmul' {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
|
||||
(x : ↑(((Action.functorCategoryEquivalence (ModuleCat S.k) (MonCat.of S.G)).symm.inverse.obj
|
||||
(S.FDiscrete.obj { as := c ( i) })).obj
|
||||
PUnit.unit))
|
||||
(y : ↑(((Action.functorCategoryEquivalence (ModuleCat S.k) (MonCat.of S.G)).symm.inverse.obj
|
||||
((Discrete.functor (Discrete.mk ∘ S.τ) ⋙ S.FDiscrete).obj { as := c ( i) })).obj
|
||||
PUnit.unit)) :
|
||||
(S.contrFin1Fin1 c i j h).inv.hom (x ⊗ₜ[S.k] y) =
|
||||
PiTensorProduct.tprod S.k (fun k =>
|
||||
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FDiscrete.map
|
||||
(eqToHom (by simp [h]))).hom y) := by
|
||||
exact contrFin1Fin1_inv_tmul S c i j h x y
|
||||
|
||||
/-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ.succ` and
|
||||
a `j` in `Fin n.succ` allowing us to undertake contraction. -/
|
||||
def contrIso {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
|
||||
S.F.obj (OverColor.mk c) ≅ ((OverColor.Discrete.pairτ S.FDiscrete S.τ).obj
|
||||
(Discrete.mk (c i))) ⊗
|
||||
(OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
|
||||
(S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractTwo i j))).trans <|
|
||||
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractTwo i j).symm))).trans <|
|
||||
(S.F.μIso _ _).symm.trans <| by
|
||||
refine tensorIso (S.contrFin1Fin1 c i j h) (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
|
||||
|
||||
open OverColor
|
||||
lemma perm_contr_cond {n : ℕ} {c : Fin n.succ.succ.succ → S.C} {c1 : Fin n.succ.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ}
|
||||
|
@ -116,6 +177,165 @@ lemma perm_contr_cond {n : ℕ} {c : Fin n.succ.succ.succ → S.C} {c1 : Fin n.s
|
|||
erw [Equiv.apply_eq_iff_eq]
|
||||
exact (Fin.succAbove_ne i j).symm
|
||||
|
||||
lemma contrIso_comm_aux_1 {n : ℕ} {c c1 : Fin n.succ.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ}
|
||||
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
|
||||
((S.F.map σ).hom ≫ (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom) ≫
|
||||
(S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom =
|
||||
(S.F.map (equivToIso (HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom).hom ≫ (S.F.map
|
||||
(mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)).symm)).hom).hom
|
||||
≫ (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom
|
||||
:= by
|
||||
ext X
|
||||
change ((S.F.map σ) ≫ (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom) ≫ (S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom)).hom X = _
|
||||
rw [← Functor.map_comp, ← Functor.map_comp]
|
||||
erw [extractTwo_finExtractTwo]
|
||||
simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Functor.map_comp, Action.comp_hom,
|
||||
ModuleCat.coe_comp, Function.comp_apply]
|
||||
rfl
|
||||
|
||||
lemma contrIso_comm_aux_2 {n : ℕ} {c c1 : Fin n.succ.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ}
|
||||
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
|
||||
(S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom ≫
|
||||
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom =
|
||||
(S.F.μIso _ _).inv.hom ≫ (S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)).hom
|
||||
:= by
|
||||
have h1 : (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)) ≫
|
||||
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv =
|
||||
(S.F.μIso _ _).inv ≫ (S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)) := by
|
||||
erw [CategoryTheory.IsIso.comp_inv_eq, CategoryTheory.Category.assoc]
|
||||
erw [CategoryTheory.IsIso.eq_inv_comp ]
|
||||
exact Eq.symm
|
||||
(LaxMonoidalFunctor.μ_natural S.F.toLaxMonoidalFunctor (extractTwoAux' i j σ)
|
||||
(extractTwoAux i j σ))
|
||||
exact congrArg (λ f => Action.Hom.hom f) h1
|
||||
|
||||
lemma contrIso_comm_aux_3 {n : ℕ} {c c1 : Fin n.succ.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ}
|
||||
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
|
||||
((Action.functorCategoryEquivalence (ModuleCat S.k) (MonCat.of S.G)).symm.inverse.map
|
||||
(S.F.map (extractTwoAux i j σ))).app
|
||||
PUnit.unit ≫
|
||||
(S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom
|
||||
= (S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j) )).hom).hom ≫
|
||||
(S.F.map (extractTwo i j σ)).hom := by
|
||||
change (S.F.map (extractTwoAux i j σ)).hom ≫ _ = _
|
||||
have h1 : (S.F.map (extractTwoAux i j σ)) ≫ (S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom) =
|
||||
(S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j) )).hom) ≫ (S.F.map (extractTwo i j σ)) := by
|
||||
rw [← Functor.map_comp, ← Functor.map_comp]
|
||||
apply congrArg
|
||||
rfl
|
||||
exact congrArg (λ f => Action.Hom.hom f) h1
|
||||
|
||||
lemma contrFin1Fin1_naturality {n : ℕ} {c c1 : Fin n.succ.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ} (h : c1 (i.succAbove j) = S.τ (c1 i))
|
||||
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
|
||||
(S.F.map (extractTwoAux' i j σ)).hom ≫ (S.contrFin1Fin1 c1 i j h).hom.hom
|
||||
= (S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
|
||||
(perm_contr_cond S h σ)).hom.hom
|
||||
|
||||
≫ ((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i)
|
||||
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)) )).hom
|
||||
:= by
|
||||
have h1 : (S.F.map (extractTwoAux' i j σ)) ≫ (S.contrFin1Fin1 c1 i j h).hom
|
||||
= (S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
|
||||
(perm_contr_cond S h σ)).hom
|
||||
|
||||
≫ ((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i)
|
||||
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)) )) := by
|
||||
erw [← CategoryTheory.Iso.eq_comp_inv ]
|
||||
rw [CategoryTheory.Category.assoc]
|
||||
erw [← CategoryTheory.Iso.inv_comp_eq ]
|
||||
ext1
|
||||
apply TensorProduct.ext'
|
||||
intro x y
|
||||
simp only [Nat.succ_eq_add_one, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
Functor.comp_obj, Discrete.functor_obj_eq_as, Function.comp_apply, CategoryStruct.comp,
|
||||
extractOne_homToEquiv, Action.Hom.comp_hom, LinearMap.coe_comp]
|
||||
|
||||
trans (S.F.map (extractTwoAux' i j σ)).hom (PiTensorProduct.tprod S.k (fun k =>
|
||||
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FDiscrete.map
|
||||
(eqToHom (by simp; erw [perm_contr_cond S h σ]))).hom y) )
|
||||
· apply congrArg
|
||||
have h1' {α :Type} {a b c d : α} (hab : a= b) (hcd : c =d ) (h : a = d) : b = c := by
|
||||
rw [← hab, hcd]
|
||||
exact h
|
||||
have h1 := S.contrFin1Fin1_inv_tmul c ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
|
||||
(perm_contr_cond S h σ ) x y
|
||||
refine h1' ?_ ?_ h1
|
||||
congr
|
||||
apply congrArg
|
||||
funext x
|
||||
match x with
|
||||
| Sum.inl 0 => rfl
|
||||
| Sum.inr 0 => rfl
|
||||
change _ = (S.contrFin1Fin1 c1 i j h).inv.hom
|
||||
((S.FDiscrete.map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i))).hom x ⊗ₜ[S.k]
|
||||
(S.FDiscrete.map (Discrete.eqToHom (congrArg S.τ (Hom.toEquiv_comp_inv_apply σ i)))).hom y)
|
||||
rw [contrFin1Fin1_inv_tmul]
|
||||
change ((lift.obj S.FDiscrete).map (extractTwoAux' i j σ)).hom _ = _
|
||||
rw [lift.map_tprod]
|
||||
apply congrArg
|
||||
funext i
|
||||
match i with
|
||||
| Sum.inl 0 => rfl
|
||||
| Sum.inr 0 =>
|
||||
simp [lift.discreteFunctorMapEqIso]
|
||||
change ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y = ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y
|
||||
rw [← Functor.map_comp, ← Functor.map_comp]
|
||||
simp only [Fin.isValue, Nat.succ_eq_add_one, Discrete.functor_obj_eq_as, Function.comp_apply,
|
||||
eqToHom_trans]
|
||||
exact congrArg (λ f => Action.Hom.hom f) h1
|
||||
|
||||
def contrIsoComm {n : ℕ} {c c1 : Fin n.succ.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ}
|
||||
|
||||
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :=
|
||||
(((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i)
|
||||
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)) )) ⊗ (S.F.map (extractTwo i j σ)))
|
||||
|
||||
lemma contrIso_comm_aux_5 {n : ℕ} {c c1 : Fin n.succ.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ} (h : c1 (i.succAbove j) = S.τ (c1 i))
|
||||
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
|
||||
(S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)).hom ≫
|
||||
((S.contrFin1Fin1 c1 i j h).hom.hom ⊗ (S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom)
|
||||
= ((S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
|
||||
(perm_contr_cond S h σ)).hom.hom ⊗ (S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j) )).hom).hom)
|
||||
≫ (S.contrIsoComm σ).hom
|
||||
:= by
|
||||
erw [← CategoryTheory.MonoidalCategory.tensor_comp (f₁ := (S.F.map (extractTwoAux' i j σ)).hom)]
|
||||
rw [contrIso_comm_aux_3 S σ]
|
||||
rw [contrFin1Fin1_naturality S h σ]
|
||||
simp [contrIsoComm]
|
||||
|
||||
|
||||
lemma contrIso_hom_hom {n : ℕ} {c1 : Fin n.succ.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ}
|
||||
{h : c1 (i.succAbove j) = S.τ (c1 i)} :
|
||||
(S.contrIso c1 i j h).hom.hom =
|
||||
(S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ≫
|
||||
(S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom ≫
|
||||
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom ≫
|
||||
((S.contrFin1Fin1 c1 i j h).hom.hom ⊗ (S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom)
|
||||
:= by
|
||||
rw [contrIso]
|
||||
simp [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Action.comp_hom,
|
||||
extractOne_homToEquiv, Action.instMonoidalCategory_tensorHom_hom]
|
||||
|
||||
open OverColor in
|
||||
lemma contrIso_comm_map {n : ℕ} {c c1 : Fin n.succ.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ}
|
||||
|
@ -124,23 +344,28 @@ lemma contrIso_comm_map {n : ℕ} {c c1 : Fin n.succ.succ.succ → S.C}
|
|||
(S.F.map σ) ≫ (S.contrIso c1 i j h).hom =
|
||||
(S.contrIso c ((OverColor.Hom.toEquiv σ).symm i)
|
||||
(((Hom.toEquiv (extractOne i σ))).symm j) (S.perm_contr_cond h σ)).hom ≫
|
||||
(((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i)
|
||||
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)) )) ⊗ (S.F.map (extractTwo i j σ))) := by
|
||||
ext Z
|
||||
simp
|
||||
rw [contrIso]
|
||||
simp
|
||||
have h1 : ((S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom ((S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ((S.F.map σ).hom Z)))
|
||||
= ((S.F.map σ) ≫ (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom) ≫ (S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom)).hom Z := by
|
||||
rfl
|
||||
have h1' : ((S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom ((S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ((S.F.map σ).hom Z)))
|
||||
= ((S.F.map (σ ≫ (equivToIso (HepLean.Fin.finExtractTwo i j)).hom ≫ (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom))).hom Z := by
|
||||
rw [h1]
|
||||
simp
|
||||
rw [h1']
|
||||
rw [extractTwo_finExtractTwo]
|
||||
simp
|
||||
sorry
|
||||
contrIsoComm S σ := by
|
||||
ext1
|
||||
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Action.comp_hom,
|
||||
extractOne_homToEquiv, Action.instMonoidalCategory_tensorHom_hom]
|
||||
rw [contrIso_hom_hom]
|
||||
rw [← CategoryTheory.Category.assoc, ← CategoryTheory.Category.assoc, ← CategoryTheory.Category.assoc ]
|
||||
rw [contrIso_comm_aux_1 S σ]
|
||||
rw [CategoryTheory.Category.assoc, CategoryTheory.Category.assoc, CategoryTheory.Category.assoc]
|
||||
rw [← CategoryTheory.Category.assoc (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom]
|
||||
rw [contrIso_comm_aux_2 S σ]
|
||||
simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Action.instMonoidalCategory_tensorObj_V,
|
||||
Action.instMonoidalCategory_tensorHom_hom, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
contrIso, Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom, tensorIso_hom, Action.comp_hom,
|
||||
Category.assoc]
|
||||
apply congrArg
|
||||
apply congrArg
|
||||
apply congrArg
|
||||
simpa only [Nat.succ_eq_add_one, extractOne_homToEquiv, Action.instMonoidalCategory_tensorObj_V,
|
||||
Action.instMonoidalCategory_tensorHom_hom, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj] using contrIso_comm_aux_5 S h σ
|
||||
|
||||
/--
|
||||
`contrMap` is a function that takes a natural number `n`, a function `c` from
|
||||
|
@ -156,6 +381,41 @@ def contrMap {n : ℕ} (c : Fin n.succ.succ → S.C)
|
|||
(tensorHom (S.contr.app (Discrete.mk (c i))) (𝟙 _)) ≫
|
||||
(MonoidalCategory.leftUnitor _).hom
|
||||
|
||||
lemma contrMap_naturality {n : ℕ} {c c1 : Fin n.succ.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)}
|
||||
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
|
||||
(S.F.map σ) ≫ (S.contrMap c1 i j h) =
|
||||
(S.contrMap c ((OverColor.Hom.toEquiv σ).symm i)
|
||||
(((Hom.toEquiv (extractOne i σ))).symm j) (S.perm_contr_cond h σ)) ≫
|
||||
(S.F.map (extractTwo i j σ)) := by
|
||||
change (S.F.map σ) ≫ ((S.contrIso c1 i j h).hom ≫
|
||||
(tensorHom (S.contr.app (Discrete.mk (c1 i))) (𝟙 _)) ≫
|
||||
(MonoidalCategory.leftUnitor _).hom) =
|
||||
((S.contrIso _ _ _ _).hom ≫
|
||||
(tensorHom (S.contr.app (Discrete.mk _)) (𝟙 _)) ≫ (MonoidalCategory.leftUnitor _).hom) ≫ _
|
||||
rw [← CategoryTheory.Category.assoc]
|
||||
rw [contrIso_comm_map S σ]
|
||||
repeat rw [CategoryTheory.Category.assoc]
|
||||
rw [← CategoryTheory.Category.assoc (S.contrIsoComm σ)]
|
||||
apply congrArg
|
||||
rw [← leftUnitor_naturality]
|
||||
repeat rw [← CategoryTheory.Category.assoc]
|
||||
apply congrFun
|
||||
apply congrArg
|
||||
rw [contrIsoComm]
|
||||
rw [← tensor_comp]
|
||||
have h1 : 𝟙_ (Rep S.k S.G) ◁ S.F.map (extractTwo i j σ) = 𝟙 _ ⊗ S.F.map (extractTwo i j σ) := by
|
||||
rfl
|
||||
rw [h1, ← tensor_comp]
|
||||
erw [CategoryTheory.Category.id_comp, CategoryTheory.Category.comp_id]
|
||||
erw [CategoryTheory.Category.comp_id]
|
||||
rw [S.contr.naturality]
|
||||
simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Monoidal.tensorUnit_obj,
|
||||
Monoidal.tensorUnit_map, Category.comp_id]
|
||||
|
||||
|
||||
|
||||
|
||||
end TensorStruct
|
||||
|
||||
/-- A syntax tree for tensor expressions. -/
|
||||
|
@ -360,20 +620,19 @@ lemma neg_perm {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
|||
-/
|
||||
|
||||
|
||||
open OverColor
|
||||
|
||||
lemma perm_contr {n : ℕ} {c : Fin n.succ.succ.succ → S.C} {c1 : Fin n.succ.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ.succ} {j : Fin n.succ.succ}
|
||||
{h : c1 (i.succAbove j) = S.τ (c1 i)} (t : TensorTree S c)
|
||||
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
|
||||
((contr i j h (perm σ t))).tensor
|
||||
= (perm (extractTwo i j σ) (contr ((OverColor.Hom.toEquiv σ).symm i)
|
||||
(((Hom.toEquiv (extractOne i σ))).symm j) (perm_contr_cond h σ) t)).tensor := by
|
||||
rw [contr_tensor, perm_tensor]
|
||||
rw [TensorStruct.contrMap]
|
||||
change (
|
||||
(S.contr.app { as := c1 i } ⊗
|
||||
𝟙 ((OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c1 ∘ i.succAbove ∘ j.succAbove)))) ≫
|
||||
(λ_ ((OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c1 ∘ i.succAbove ∘ j.succAbove)))).hom).hom
|
||||
((S.contrIso c1 i j h).hom.hom ((S.F.map σ).hom t.tensor)) = _
|
||||
(contr i j h (perm σ t)).tensor
|
||||
= (perm (extractTwo i j σ) (contr ((Hom.toEquiv σ).symm i)
|
||||
(((Hom.toEquiv (extractOne i σ))).symm j) (S.perm_contr_cond h σ) t)).tensor := by
|
||||
rw [contr_tensor, perm_tensor, perm_tensor]
|
||||
change ((S.F.map σ) ≫ S.contrMap c1 i j h).hom t.tensor = _
|
||||
rw [S.contrMap_naturality σ]
|
||||
rfl
|
||||
|
||||
end
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue