feat: Permutation and contraction commute
This commit is contained in:
parent
d542ae3903
commit
7358807980
3 changed files with 311 additions and 40 deletions
|
@ -104,13 +104,16 @@ lemma pairIsoSep_tmul {c1 c2 : C} (x : F.obj (Discrete.mk c1)) (y : F.obj (Discr
|
|||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/-- The functor taking `c` to `F c ⊗ F (τ c)`. -/
|
||||
def pairτ (τ : C → C) : Discrete C ⥤ Rep k G :=
|
||||
F ⊗ ((Discrete.functor (Discrete.mk ∘ τ) : Discrete C ⥤ Discrete C) ⋙ F)
|
||||
|
||||
lemma pairτ_tmul {c : C} (x : F.obj (Discrete.mk c)) (y : ↑(((Action.functorCategoryEquivalence (ModuleCat k) (MonCat.of G)).symm.inverse.obj
|
||||
((Discrete.functor (Discrete.mk ∘ τ) ⋙ F).obj { as := c })).obj
|
||||
PUnit.unit)) (h : c = c1):
|
||||
((pairτ F τ).map (Discrete.eqToHom h)).hom (x ⊗ₜ[k] y)=
|
||||
((F.map (Discrete.eqToHom h)).hom x) ⊗ₜ[k] ((F.map (Discrete.eqToHom (by simp [h] ))).hom y) := by
|
||||
rfl
|
||||
/-- The functor taking `c` to `F (τ c) ⊗ F c`. -/
|
||||
def τPair (τ : C → C) : Discrete C ⥤ Rep k G :=
|
||||
((Discrete.functor (Discrete.mk ∘ τ) : Discrete C ⥤ Discrete C) ⋙ F) ⊗ F
|
||||
|
|
|
@ -41,6 +41,15 @@ def mkSum (c : X ⊕ Y → C) : mk c ≅ mk (c ∘ Sum.inl) ⊗ mk (c ∘ Sum.in
|
|||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl))
|
||||
|
||||
@[simp]
|
||||
lemma mkSum_homToEquiv {c : X ⊕ Y → C}:
|
||||
Hom.toEquiv (mkSum c).hom = (Equiv.refl _) := by
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma mkSum_inv_homToEquiv {c : X ⊕ Y → C}:
|
||||
Hom.toEquiv (mkSum c).inv = (Equiv.refl _) := by
|
||||
rfl
|
||||
/-- The isomorphism between objects in `OverColor C` given equality of maps. -/
|
||||
def mkIso {c1 c2 : X → C} (h : c1 = c2) : mk c1 ≅ mk c2 :=
|
||||
Hom.toIso (Over.isoMk (Equiv.refl _).toIso (by
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue