refactor: Lint

This commit is contained in:
jstoobysmith 2024-07-17 16:12:30 -04:00
parent 36752fa5c4
commit 73df7d24a7
4 changed files with 53 additions and 96 deletions

View file

@ -187,24 +187,16 @@ open Marked
/-- Contracting the indices of `ofMatUpDown` returns the trace of the matrix. -/
lemma contr_ofMatUpDown_eq_trace {d : } (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ) :
contr (ofMatUpDown M) (by rfl) = ofReal d M.trace := by
refine ext ?_ ?_
refine ext ?_ rfl
· funext i
exact Empty.elim i
· funext i
simp only [Fin.isValue, contr, IndexValue, Equiv.cast_apply, trace, diag_apply, ofReal,
Finset.univ_unique, Fin.default_eq_zero, Finset.sum_singleton]
apply Finset.sum_congr rfl
intro x _
rfl
/-- Contracting the indices of `ofMatDownUp` returns the trace of the matrix. -/
lemma contr_ofMatDownUp_eq_trace {d : } (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ) :
contr (ofMatDownUp M) (by rfl) = ofReal d M.trace := by
refine ext ?_ ?_
refine ext ?_ rfl
· funext i
exact Empty.elim i
· funext i
rfl
/-!
@ -217,46 +209,38 @@ lemma contr_ofMatDownUp_eq_trace {d : } (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1
lemma mul_ofVecUp_ofVecDown_eq_dot_prod {d : } (v₁ v₂ : Fin 1 ⊕ Fin d → ) :
mapIso d (@Equiv.equivEmpty (Empty ⊕ Empty) instIsEmptySum)
(mul (ofVecUp v₁) (ofVecDown v₂) (by rfl)) = ofReal d (v₁ ⬝ᵥ v₂) := by
refine ext ?_ ?_
refine ext ?_ rfl
· funext i
exact Empty.elim i
· funext i
rfl
/-- Multiplying `ofVecDown` with `ofVecUp` gives the dot product. -/
@[simp]
lemma mul_ofVecDown_ofVecUp_eq_dot_prod {d : } (v₁ v₂ : Fin 1 ⊕ Fin d → ) :
mapIso d (Equiv.equivEmpty (Empty ⊕ Empty))
(mul (ofVecDown v₁) (ofVecUp v₂) rfl) = ofReal d (v₁ ⬝ᵥ v₂) := by
refine ext ?_ ?_
refine ext ?_ rfl
· funext i
exact Empty.elim i
· funext i
rfl
lemma mul_ofMatUpDown_ofVecUp_eq_mulVec {d : } (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) )
(v : Fin 1 ⊕ Fin d → ) :
mapIso d ((Equiv.sumEmpty (Empty ⊕ Fin 1) Empty))
(mul (unmarkFirst $ ofMatUpDown M) (ofVecUp v) rfl) = ofVecUp (M *ᵥ v) := by
refine ext ?_ ?_
refine ext ?_ rfl
· funext i
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, mapIso_apply_color, mul_color, Equiv.symm_symm]
fin_cases i
rfl
· funext i
rfl
lemma mul_ofMatDownUp_ofVecDown_eq_mulVec {d : } (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) )
(v : Fin 1 ⊕ Fin d → ) :
mapIso d (Equiv.sumEmpty (Empty ⊕ Fin 1) Empty)
(mul (unmarkFirst $ ofMatDownUp M) (ofVecDown v) rfl) = ofVecDown (M *ᵥ v) := by
refine ext ?_ ?_
refine ext ?_ rfl
· funext i
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, mapIso_apply_color, mul_color, Equiv.symm_symm]
fin_cases i
rfl
· funext i
rfl
/-!
@ -290,7 +274,7 @@ lemma lorentzAction_ofVecUp (v : Fin 1 ⊕ Fin d → ) :
intro i
simp_all only [Finset.mem_univ, Fin.isValue, Equiv.coe_fn_mk]
intro j _
erw [toTensorRepMat_apply, Finset.prod_singleton]
simp_all only [Finset.mem_univ, Fin.isValue, Finset.prod_singleton, indexValueIso_refl]
rfl
/-- The action of the Lorentz group on `ofVecDown v` is
@ -310,7 +294,7 @@ lemma lorentzAction_ofVecDown (v : Fin 1 ⊕ Fin d → ) :
intro i
simp_all only [Finset.mem_univ, Fin.isValue, Equiv.coe_fn_mk]
intro j _
erw [toTensorRepMat_apply, Finset.prod_singleton]
simp_all only [Finset.mem_univ, Fin.isValue, Finset.prod_singleton, indexValueIso_refl]
rfl
@[simp]
@ -327,12 +311,8 @@ lemma lorentzAction_ofMatUpUp (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d)
refine Finset.sum_congr rfl (fun x _ => ?_)
rw [Finset.sum_mul]
refine Finset.sum_congr rfl (fun y _ => ?_)
erw [toTensorRepMat_apply]
simp only [Fintype.prod_sum_type, Finset.univ_eq_empty, Finset.prod_empty, Fin.prod_univ_two,
Fin.isValue, one_mul, indexValueIso_refl, IndexValue]
simp only [colorMatrix, Fin.isValue, MonoidHom.coe_mk, OneHom.coe_mk]
rw [mul_assoc, mul_comm _ (M _ _), ← mul_assoc]
congr
simp only [Fin.prod_univ_two, Fin.isValue, indexValueIso_refl, IndexValue]
exact mul_right_comm _ _ _
@[simp]
lemma lorentzAction_ofMatDownDown (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ) :
@ -348,12 +328,8 @@ lemma lorentzAction_ofMatDownDown (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d
refine Finset.sum_congr rfl (fun x _ => ?_)
rw [Finset.sum_mul]
refine Finset.sum_congr rfl (fun y _ => ?_)
erw [toTensorRepMat_apply]
simp only [Fintype.prod_sum_type, Finset.univ_eq_empty, Finset.prod_empty, Fin.prod_univ_two,
Fin.isValue, one_mul, lorentzGroupIsGroup_inv, indexValueIso_refl, IndexValue]
simp only [colorMatrix, Fin.isValue, MonoidHom.coe_mk, OneHom.coe_mk]
rw [mul_assoc, mul_comm _ (M _ _), ← mul_assoc]
congr
simp only [Fin.prod_univ_two, Fin.isValue, indexValueIso_refl, IndexValue]
exact mul_right_comm _ _ _
@[simp]
lemma lorentzAction_ofMatUpDown (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ) :
@ -369,12 +345,8 @@ lemma lorentzAction_ofMatUpDown (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d)
refine Finset.sum_congr rfl (fun x _ => ?_)
rw [Finset.sum_mul]
refine Finset.sum_congr rfl (fun y _ => ?_)
erw [toTensorRepMat_apply]
simp only [Fintype.prod_sum_type, Finset.univ_eq_empty, Finset.prod_empty, Fin.prod_univ_two,
Fin.isValue, one_mul, indexValueIso_refl, IndexValue, lorentzGroupIsGroup_inv]
simp only [colorMatrix, Fin.isValue, MonoidHom.coe_mk, OneHom.coe_mk]
rw [mul_assoc, mul_comm _ (M _ _), ← mul_assoc]
congr
simp only [Fin.prod_univ_two, Fin.isValue, indexValueIso_refl, IndexValue]
exact mul_right_comm _ _ _
@[simp]
lemma lorentzAction_ofMatDownUp (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ) :
@ -391,12 +363,8 @@ lemma lorentzAction_ofMatDownUp (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d)
refine Finset.sum_congr rfl (fun x _ => ?_)
rw [Finset.sum_mul]
refine Finset.sum_congr rfl (fun y _ => ?_)
erw [toTensorRepMat_apply]
simp only [Fintype.prod_sum_type, Finset.univ_eq_empty, Finset.prod_empty, Fin.prod_univ_two,
Fin.isValue, one_mul, lorentzGroupIsGroup_inv, indexValueIso_refl, IndexValue]
simp only [colorMatrix, Fin.isValue, MonoidHom.coe_mk, OneHom.coe_mk]
rw [mul_assoc, mul_comm _ (M _ _), ← mul_assoc]
congr
simp only [Fin.prod_univ_two, Fin.isValue, indexValueIso_refl, IndexValue]
exact mul_right_comm _ _ _
end lorentzAction