Merge pull request #168 from HEPLean/informal_defs
feat: Informal lemmas about Higgs bosons
This commit is contained in:
commit
7427d762c9
5 changed files with 92 additions and 2 deletions
|
@ -50,6 +50,7 @@ import HepLean.BeyondTheStandardModel.GeorgiGlashow.Basic
|
|||
import HepLean.BeyondTheStandardModel.PatiSalam.Basic
|
||||
import HepLean.BeyondTheStandardModel.Spin10.Basic
|
||||
import HepLean.BeyondTheStandardModel.TwoHDM.Basic
|
||||
import HepLean.BeyondTheStandardModel.TwoHDM.GaugeOrbits
|
||||
import HepLean.FeynmanDiagrams.Basic
|
||||
import HepLean.FeynmanDiagrams.Instances.ComplexScalar
|
||||
import HepLean.FeynmanDiagrams.Instances.Phi4
|
||||
|
|
|
@ -142,7 +142,8 @@ lemma left_eq_neg_right : P.toFun Φ1 (- Φ1) =
|
|||
-/
|
||||
|
||||
/-! TODO: Prove bounded properties of the 2HDM potential.
|
||||
See e.g. https://inspirehep.net/literature/201299. -/
|
||||
See e.g. https://inspirehep.net/literature/201299 and
|
||||
https://arxiv.org/pdf/hep-ph/0605184. -/
|
||||
|
||||
/-- The proposition on the coefficents for a potential to be bounded. -/
|
||||
def IsBounded : Prop :=
|
||||
|
|
35
HepLean/BeyondTheStandardModel/TwoHDM/GaugeOrbits.lean
Normal file
35
HepLean/BeyondTheStandardModel/TwoHDM/GaugeOrbits.lean
Normal file
|
@ -0,0 +1,35 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.BeyondTheStandardModel.TwoHDM.Basic
|
||||
/-!
|
||||
|
||||
# Gauge orbits for the 2HDM
|
||||
|
||||
The main reference for material in this section is https://arxiv.org/pdf/hep-ph/0605184.
|
||||
|
||||
-/
|
||||
|
||||
namespace TwoHDM
|
||||
|
||||
informal_definition prodMatrix where
|
||||
math :≈ "For two Higgs fields `Φ₁` and `Φ₂`, the map from space time to 2 x 2 complex matrices
|
||||
defined by ((Φ₁^†Φ₁, Φ₂^†Φ₁), (Φ₁^†Φ₂, Φ₂^†Φ₂)). "
|
||||
ref :≈ "https://arxiv.org/pdf/hep-ph/0605184 eq 3.8."
|
||||
deps :≈ [``StandardModel.HiggsVec, ``SpaceTime]
|
||||
|
||||
informal_lemma prodMatrix_positive_semidefinite where
|
||||
math :≈ "For all x in ``SpaceTime, ``prodMatrix at `x` is positive semidefinite."
|
||||
deps :≈ [``prodMatrix, ``SpaceTime]
|
||||
|
||||
informal_lemma prodMatrix_hermitian where
|
||||
math :≈ "For all x in ``SpaceTime, ``prodMatrix at `x` is hermitian."
|
||||
deps :≈ [``prodMatrix, ``SpaceTime]
|
||||
|
||||
informal_lemma prodMatrix_smooth where
|
||||
math :≈ "The map ``prodMatrix is a smooth function on spacetime."
|
||||
deps :≈ [``prodMatrix]
|
||||
|
||||
end TwoHDM
|
|
@ -6,6 +6,7 @@ Authors: Joseph Tooby-Smith
|
|||
import Mathlib.Data.Complex.Exponential
|
||||
import Mathlib.Geometry.Manifold.Instances.Real
|
||||
import Mathlib.LinearAlgebra.Matrix.ToLin
|
||||
import HepLean.SpaceTime.Basic
|
||||
import HepLean.Meta.Informal
|
||||
/-!
|
||||
# The Standard Model
|
||||
|
@ -83,4 +84,26 @@ informal_definition GaugeGroup where
|
|||
deps :≈ [``GaugeGroupI, ``gaugeGroupℤ₆SubGroup, ``gaugeGroupℤ₂SubGroup, ``gaugeGroupℤ₃SubGroup,
|
||||
``GaugeGroupQuot]
|
||||
|
||||
/-!
|
||||
|
||||
## Smoothness structure on the gauge group.
|
||||
|
||||
-/
|
||||
|
||||
informal_lemma gaugeGroupI_lie where
|
||||
math :≈ "The gauge group `GaugeGroupI` is a Lie group.."
|
||||
deps :≈ [``GaugeGroupI]
|
||||
|
||||
informal_lemma gaugeGroup_lie where
|
||||
math :≈ "For every q in ``GaugeGroupQuot the group ``GaugeGroup q is a Lie group."
|
||||
deps :≈ [``GaugeGroup]
|
||||
|
||||
informal_definition gaugeBundleI where
|
||||
math :≈ "The trivial principal bundle over SpaceTime with structure group ``GaugeGroupI."
|
||||
deps :≈ [``GaugeGroupI, ``SpaceTime]
|
||||
|
||||
informal_definition gaugeTransformI where
|
||||
math :≈ "A global section of ``gaugeBundleI."
|
||||
deps :≈ [``gaugeBundleI]
|
||||
|
||||
end StandardModel
|
||||
|
|
|
@ -190,6 +190,11 @@ theorem rotate_fst_real_snd_zero (φ : HiggsVec) :
|
|||
· simp only [Fin.mk_one, Fin.isValue, Pi.smul_apply, Function.comp_apply, cons_val_one, head_cons,
|
||||
tail_cons, smul_zero]
|
||||
|
||||
informal_lemma guage_orbit where
|
||||
math :≈ "There exists a `g` in ``GaugeGroupI such that `rep g φ = φ'` if and only if
|
||||
‖φ‖ = ‖φ'‖."
|
||||
deps :≈ [``rotate_fst_zero_snd_real]
|
||||
|
||||
informal_lemma stability_group_single where
|
||||
physics :≈ "The Higgs boson breaks electroweak symmetry down to the electromagnetic force."
|
||||
math :≈ "The stablity group of the action of `rep` on `![0, Complex.ofReal ‖φ‖]`,
|
||||
|
@ -203,7 +208,7 @@ informal_lemma stability_group where
|
|||
by the action of ``StandardModel.HiggsVec.rep is given by `SU(3) x ℤ₆` where ℤ₆
|
||||
is the subgroup of `SU(2) x U(1)` with elements `(α^(-3) * I₂, α)` where
|
||||
α is a sixth root of unity."
|
||||
deps :≈ [``StandardModel.HiggsVec, ``StandardModel.HiggsVec.rep]
|
||||
deps :≈ [``HiggsVec, ``rep]
|
||||
|
||||
end HiggsVec
|
||||
|
||||
|
@ -211,5 +216,30 @@ end HiggsVec
|
|||
/-! TODO: Prove `⟪φ1, φ2⟫_H` invariant under the global gauge action. (norm_map_of_mem_unitary) -/
|
||||
/-! TODO: Prove invariance of potential under global gauge action. -/
|
||||
|
||||
namespace HiggsField
|
||||
|
||||
/-!
|
||||
|
||||
## Gauge transformations acting on Higgs fields.
|
||||
|
||||
-/
|
||||
|
||||
informal_definition gaugeAction where
|
||||
math :≈ "The action of ``gaugeTransformI on ``HiggsField acting pointwise through
|
||||
``HiggsVec.rep."
|
||||
deps :≈ [``HiggsVec.rep, ``gaugeTransformI]
|
||||
|
||||
informal_lemma guage_orbit where
|
||||
math :≈ "There exists a `g` in ``gaugeTransformI such that `gaugeAction g φ = φ'` if and only if
|
||||
φ(x)^† φ(x) = φ'(x)^† φ'(x)."
|
||||
deps :≈ [``gaugeAction]
|
||||
|
||||
informal_lemma gauge_orbit_surject where
|
||||
math :≈ "For every smooth map f from ``SpaceTime to ℝ such that `f` is positive semidefinite,
|
||||
there exists a Higgs field φ such that `f = φ^† φ`."
|
||||
deps :≈ [``HiggsField, ``SpaceTime]
|
||||
|
||||
end HiggsField
|
||||
|
||||
end StandardModel
|
||||
end
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue