Merge pull request #168 from HEPLean/informal_defs

feat: Informal lemmas about Higgs bosons
This commit is contained in:
Joseph Tooby-Smith 2024-09-26 09:43:22 +00:00 committed by GitHub
commit 7427d762c9
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 92 additions and 2 deletions

View file

@ -50,6 +50,7 @@ import HepLean.BeyondTheStandardModel.GeorgiGlashow.Basic
import HepLean.BeyondTheStandardModel.PatiSalam.Basic
import HepLean.BeyondTheStandardModel.Spin10.Basic
import HepLean.BeyondTheStandardModel.TwoHDM.Basic
import HepLean.BeyondTheStandardModel.TwoHDM.GaugeOrbits
import HepLean.FeynmanDiagrams.Basic
import HepLean.FeynmanDiagrams.Instances.ComplexScalar
import HepLean.FeynmanDiagrams.Instances.Phi4

View file

@ -142,7 +142,8 @@ lemma left_eq_neg_right : P.toFun Φ1 (- Φ1) =
-/
/-! TODO: Prove bounded properties of the 2HDM potential.
See e.g. https://inspirehep.net/literature/201299. -/
See e.g. https://inspirehep.net/literature/201299 and
https://arxiv.org/pdf/hep-ph/0605184. -/
/-- The proposition on the coefficents for a potential to be bounded. -/
def IsBounded : Prop :=

View file

@ -0,0 +1,35 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.BeyondTheStandardModel.TwoHDM.Basic
/-!
# Gauge orbits for the 2HDM
The main reference for material in this section is https://arxiv.org/pdf/hep-ph/0605184.
-/
namespace TwoHDM
informal_definition prodMatrix where
math :≈ "For two Higgs fields `Φ₁` and `Φ₂`, the map from space time to 2 x 2 complex matrices
defined by ((Φ₁^†Φ₁, Φ₂^†Φ₁), (Φ₁^†Φ₂, Φ₂^†Φ₂)). "
ref :≈ "https://arxiv.org/pdf/hep-ph/0605184 eq 3.8."
deps :≈ [``StandardModel.HiggsVec, ``SpaceTime]
informal_lemma prodMatrix_positive_semidefinite where
math :≈ "For all x in ``SpaceTime, ``prodMatrix at `x` is positive semidefinite."
deps :≈ [``prodMatrix, ``SpaceTime]
informal_lemma prodMatrix_hermitian where
math :≈ "For all x in ``SpaceTime, ``prodMatrix at `x` is hermitian."
deps :≈ [``prodMatrix, ``SpaceTime]
informal_lemma prodMatrix_smooth where
math :≈ "The map ``prodMatrix is a smooth function on spacetime."
deps :≈ [``prodMatrix]
end TwoHDM

View file

@ -6,6 +6,7 @@ Authors: Joseph Tooby-Smith
import Mathlib.Data.Complex.Exponential
import Mathlib.Geometry.Manifold.Instances.Real
import Mathlib.LinearAlgebra.Matrix.ToLin
import HepLean.SpaceTime.Basic
import HepLean.Meta.Informal
/-!
# The Standard Model
@ -83,4 +84,26 @@ informal_definition GaugeGroup where
deps :≈ [``GaugeGroupI, ``gaugeGroup₆SubGroup, ``gaugeGroup₂SubGroup, ``gaugeGroup₃SubGroup,
``GaugeGroupQuot]
/-!
## Smoothness structure on the gauge group.
-/
informal_lemma gaugeGroupI_lie where
math :≈ "The gauge group `GaugeGroupI` is a Lie group.."
deps :≈ [``GaugeGroupI]
informal_lemma gaugeGroup_lie where
math :≈ "For every q in ``GaugeGroupQuot the group ``GaugeGroup q is a Lie group."
deps :≈ [``GaugeGroup]
informal_definition gaugeBundleI where
math :≈ "The trivial principal bundle over SpaceTime with structure group ``GaugeGroupI."
deps :≈ [``GaugeGroupI, ``SpaceTime]
informal_definition gaugeTransformI where
math :≈ "A global section of ``gaugeBundleI."
deps :≈ [``gaugeBundleI]
end StandardModel

View file

@ -190,6 +190,11 @@ theorem rotate_fst_real_snd_zero (φ : HiggsVec) :
· simp only [Fin.mk_one, Fin.isValue, Pi.smul_apply, Function.comp_apply, cons_val_one, head_cons,
tail_cons, smul_zero]
informal_lemma guage_orbit where
math :≈ "There exists a `g` in ``GaugeGroupI such that `rep g φ = φ'` if and only if
‖φ‖ = ‖φ'‖."
deps :≈ [``rotate_fst_zero_snd_real]
informal_lemma stability_group_single where
physics :≈ "The Higgs boson breaks electroweak symmetry down to the electromagnetic force."
math :≈ "The stablity group of the action of `rep` on `![0, Complex.ofReal ‖φ‖]`,
@ -203,7 +208,7 @@ informal_lemma stability_group where
by the action of ``StandardModel.HiggsVec.rep is given by `SU(3) x ℤ₆` where ℤ₆
is the subgroup of `SU(2) x U(1)` with elements `(α^(-3) * I₂, α)` where
α is a sixth root of unity."
deps :≈ [``StandardModel.HiggsVec, ``StandardModel.HiggsVec.rep]
deps :≈ [``HiggsVec, ``rep]
end HiggsVec
@ -211,5 +216,30 @@ end HiggsVec
/-! TODO: Prove `⟪φ1, φ2⟫_H` invariant under the global gauge action. (norm_map_of_mem_unitary) -/
/-! TODO: Prove invariance of potential under global gauge action. -/
namespace HiggsField
/-!
## Gauge transformations acting on Higgs fields.
-/
informal_definition gaugeAction where
math :≈ "The action of ``gaugeTransformI on ``HiggsField acting pointwise through
``HiggsVec.rep."
deps :≈ [``HiggsVec.rep, ``gaugeTransformI]
informal_lemma guage_orbit where
math :≈ "There exists a `g` in ``gaugeTransformI such that `gaugeAction g φ = φ'` if and only if
φ(x)^† φ(x) = φ'(x)^† φ'(x)."
deps :≈ [``gaugeAction]
informal_lemma gauge_orbit_surject where
math :≈ "For every smooth map f from ``SpaceTime to such that `f` is positive semidefinite,
there exists a Higgs field φ such that `f = φ^† φ`."
deps :≈ [``HiggsField, ``SpaceTime]
end HiggsField
end StandardModel
end