feat: Add expansion of Pauli matrices as basis vect
This commit is contained in:
parent
1148234929
commit
74d4b2c2c0
4 changed files with 162 additions and 4 deletions
|
@ -35,6 +35,76 @@ open SpaceTime
|
|||
def asTensor : (complexContr ⊗ leftHanded ⊗ rightHanded).V :=
|
||||
∑ i, complexContrBasis i ⊗ₜ leftRightToMatrix.symm (σSA i)
|
||||
|
||||
/-- The expansion of `asTensor` into complexContrBasis basis vectors . -/
|
||||
lemma asTensor_expand_complexContrBasis : asTensor =
|
||||
complexContrBasis (Sum.inl 0) ⊗ₜ leftRightToMatrix.symm (σSA (Sum.inl 0))
|
||||
+ complexContrBasis (Sum.inr 0) ⊗ₜ leftRightToMatrix.symm (σSA (Sum.inr 0))
|
||||
+ complexContrBasis (Sum.inr 1) ⊗ₜ leftRightToMatrix.symm (σSA (Sum.inr 1))
|
||||
+ complexContrBasis (Sum.inr 2) ⊗ₜ leftRightToMatrix.symm (σSA (Sum.inr 2)) := by
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, asTensor,
|
||||
CategoryTheory.Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, Fintype.sum_sum_type, Finset.univ_unique,
|
||||
Fin.default_eq_zero, Fin.isValue, Finset.sum_singleton, Fin.sum_univ_three]
|
||||
rfl
|
||||
|
||||
/-- The expansion of the pauli matrix `σ₀` in terms of a basis of tensor product vectors. -/
|
||||
lemma leftRightToMatrix_σSA_inl_0_expand : leftRightToMatrix.symm (σSA (Sum.inl 0)) =
|
||||
leftBasis 0 ⊗ₜ rightBasis 0 + leftBasis 1 ⊗ₜ rightBasis 1 := by
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Fin.isValue]
|
||||
erw [leftRightToMatrix_symm_expand_tmul]
|
||||
simp only [σSA, Fin.isValue, Basis.coe_mk, σSA', σ0, of_apply, cons_val', empty_val',
|
||||
cons_val_fin_one, Fin.sum_univ_two, cons_val_zero, cons_val_one, head_cons, one_smul, zero_smul,
|
||||
add_zero, head_fin_const, zero_add, CategoryTheory.Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj]
|
||||
|
||||
/-- The expansion of the pauli matrix `σ₁` in terms of a basis of tensor product vectors. -/
|
||||
lemma leftRightToMatrix_σSA_inr_0_expand : leftRightToMatrix.symm (σSA (Sum.inr 0)) =
|
||||
leftBasis 0 ⊗ₜ rightBasis 1 + leftBasis 1 ⊗ₜ rightBasis 0:= by
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Fin.isValue]
|
||||
erw [leftRightToMatrix_symm_expand_tmul]
|
||||
simp only [σSA, Fin.isValue, Basis.coe_mk, σSA', σ1, of_apply, cons_val', empty_val',
|
||||
cons_val_fin_one, Fin.sum_univ_two, cons_val_zero, cons_val_one, head_cons, zero_smul, one_smul,
|
||||
zero_add, head_fin_const, add_zero, CategoryTheory.Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj]
|
||||
|
||||
/-- The expansion of the pauli matrix `σ₂` in terms of a basis of tensor product vectors. -/
|
||||
lemma leftRightToMatrix_σSA_inr_1_expand : leftRightToMatrix.symm (σSA (Sum.inr 1)) =
|
||||
-(I • leftBasis 0 ⊗ₜ[ℂ] rightBasis 1) + I • leftBasis 1 ⊗ₜ[ℂ] rightBasis 0 := by
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Fin.isValue]
|
||||
erw [leftRightToMatrix_symm_expand_tmul]
|
||||
simp only [σSA, Fin.isValue, Basis.coe_mk, σSA', σ2, of_apply, cons_val', empty_val',
|
||||
cons_val_fin_one, Fin.sum_univ_two, cons_val_zero, cons_val_one, head_cons, zero_smul, neg_smul,
|
||||
zero_add, head_fin_const, add_zero]
|
||||
|
||||
/-- The expansion of the pauli matrix `σ₃` in terms of a basis of tensor product vectors. -/
|
||||
lemma leftRightToMatrix_σSA_inr_2_expand : leftRightToMatrix.symm (σSA (Sum.inr 2)) =
|
||||
leftBasis 0 ⊗ₜ rightBasis 0 - leftBasis 1 ⊗ₜ rightBasis 1 := by
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Fin.isValue]
|
||||
erw [leftRightToMatrix_symm_expand_tmul]
|
||||
simp only [σSA, Fin.isValue, Basis.coe_mk, σSA', σ3, of_apply, cons_val', empty_val',
|
||||
cons_val_fin_one, Fin.sum_univ_two, cons_val_zero, cons_val_one, head_cons, one_smul, zero_smul,
|
||||
add_zero, head_fin_const, neg_smul, zero_add, CategoryTheory.Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj]
|
||||
rfl
|
||||
|
||||
/-- The expansion of `asTensor` into complexContrBasis basis of tensor product vectors. -/
|
||||
lemma asTensor_expand : asTensor =
|
||||
complexContrBasis (Sum.inl 0) ⊗ₜ (leftBasis 0 ⊗ₜ rightBasis 0)
|
||||
+ complexContrBasis (Sum.inl 0) ⊗ₜ (leftBasis 1 ⊗ₜ rightBasis 1)
|
||||
+ complexContrBasis (Sum.inr 0) ⊗ₜ (leftBasis 0 ⊗ₜ rightBasis 1)
|
||||
+ complexContrBasis (Sum.inr 0) ⊗ₜ (leftBasis 1 ⊗ₜ rightBasis 0)
|
||||
- I • complexContrBasis (Sum.inr 1) ⊗ₜ (leftBasis 0 ⊗ₜ rightBasis 1)
|
||||
+ I • complexContrBasis (Sum.inr 1) ⊗ₜ (leftBasis 1 ⊗ₜ rightBasis 0)
|
||||
+ complexContrBasis (Sum.inr 2) ⊗ₜ (leftBasis 0 ⊗ₜ rightBasis 0)
|
||||
- complexContrBasis (Sum.inr 2) ⊗ₜ (leftBasis 1 ⊗ₜ rightBasis 1) := by
|
||||
rw [asTensor_expand_complexContrBasis]
|
||||
rw [leftRightToMatrix_σSA_inl_0_expand, leftRightToMatrix_σSA_inr_0_expand,
|
||||
leftRightToMatrix_σSA_inr_1_expand, leftRightToMatrix_σSA_inr_2_expand]
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, CategoryTheory.Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
Fin.isValue, tmul_add, tmul_neg, tmul_smul, tmul_sub]
|
||||
rfl
|
||||
|
||||
/-- The tensor `σ^μ^a^{dot a}` based on the Pauli-matrices as a morphism,
|
||||
`𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexContr ⊗ leftHanded ⊗ rightHanded` manifesting
|
||||
the invariance under the `SL(2,ℂ)` action. -/
|
||||
|
@ -124,5 +194,10 @@ def asConsTensor : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexContr ⊗ leftHanded ⊗
|
|||
CategoryTheory.Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj]
|
||||
|
||||
lemma asConsTensor_apply_one : asConsTensor.hom (1 : ℂ) = asTensor := by
|
||||
change asConsTensor.hom.toFun (1 : ℂ) = asTensor
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
asConsTensor, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul]
|
||||
|
||||
end
|
||||
end PauliMatrix
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue