refactor: Replace more simp with simp only
This commit is contained in:
parent
b8cd3928e7
commit
750c4048f6
11 changed files with 76 additions and 55 deletions
|
@ -158,7 +158,8 @@ theorem rotate_fst_zero_snd_real (φ : HiggsVec) :
|
|||
∃ (g : GaugeGroup), rep g φ = ![0, Complex.ofReal ‖φ‖] := by
|
||||
by_cases h : φ = 0
|
||||
· use ⟨1, 1, 1⟩
|
||||
simp [h]
|
||||
simp only [Prod.mk_one_one, _root_.map_one, h, map_zero, Nat.succ_eq_add_one, Nat.reduceAdd,
|
||||
norm_zero]
|
||||
ext i
|
||||
fin_cases i <;> rfl
|
||||
· use rotateGuageGroup h
|
||||
|
|
|
@ -89,7 +89,8 @@ lemma eq_zero_at (μ2 : ℝ) {𝓵 : ℝ} (h : 𝓵 ≠ 0) (φ : HiggsField) (x
|
|||
rw [hV] at h1
|
||||
have h2 : ‖φ‖_H ^ 2 x * (𝓵 * ‖φ‖_H ^ 2 x + - μ2) = 0 := by
|
||||
linear_combination h1
|
||||
simp at h2
|
||||
simp only [normSq, mul_eq_zero, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff,
|
||||
norm_eq_zero] at h2
|
||||
cases' h2 with h2 h2
|
||||
· simp_all
|
||||
· apply Or.inr
|
||||
|
@ -139,7 +140,7 @@ lemma pot_le_zero_of_neg_𝓵 (μ2 : ℝ) {𝓵 : ℝ} (h : 𝓵 < 0) (φ : Higg
|
|||
(0 < μ2 ∧ potential μ2 𝓵 φ x ≤ 0) ∨ μ2 ≤ 0 := by
|
||||
by_cases hμ2 : μ2 ≤ 0
|
||||
· simp [hμ2]
|
||||
simp [potential, hμ2]
|
||||
simp only [potential, normSq, neg_mul, neg_add_le_iff_le_add, add_zero, hμ2, or_false]
|
||||
apply And.intro (lt_of_not_ge hμ2)
|
||||
have h1 : 0 ≤ μ2 * ‖φ x‖ ^ 2 := by
|
||||
refine Left.mul_nonneg ?ha ?hb
|
||||
|
@ -163,7 +164,7 @@ lemma exist_sol_iff_of_neg_𝓵 (μ2 : ℝ) {𝓵 : ℝ} (h𝓵 : 𝓵 < 0) (c :
|
|||
ring_nf
|
||||
let a := (μ2 - Real.sqrt (discrim 𝓵 (- μ2) (- c))) / (2 * 𝓵)
|
||||
have ha : 0 ≤ a := by
|
||||
simp [a, discrim]
|
||||
simp only [discrim, even_two, Even.neg_pow, mul_neg, sub_neg_eq_add, a]
|
||||
rw [div_nonneg_iff]
|
||||
refine Or.inr (And.intro ?_ ?_)
|
||||
· rw [sub_nonpos]
|
||||
|
@ -188,7 +189,7 @@ lemma exist_sol_iff_of_neg_𝓵 (μ2 : ℝ) {𝓵 : ℝ} (h𝓵 : 𝓵 < 0) (c :
|
|||
trans 𝓵 * a * a + (- μ2) * a + (- c)
|
||||
· ring
|
||||
have hd : 0 ≤ (discrim 𝓵 (-μ2) (-c)) := by
|
||||
simp [discrim]
|
||||
simp only [discrim, even_two, Even.neg_pow, mul_neg, sub_neg_eq_add]
|
||||
rcases h with h | h
|
||||
· refine Left.add_nonneg (sq_nonneg μ2) ?_
|
||||
refine mul_nonneg_of_nonpos_of_nonpos ?_ h.2
|
||||
|
@ -216,7 +217,7 @@ def IsBounded (μ2 𝓵 : ℝ) : Prop :=
|
|||
lemma isBounded_𝓵_nonneg {μ2 𝓵 : ℝ} (h : IsBounded μ2 𝓵) :
|
||||
0 ≤ 𝓵 := by
|
||||
by_contra hl
|
||||
simp at hl
|
||||
rw [not_le] at hl
|
||||
obtain ⟨c, hc⟩ := h
|
||||
by_cases hμ : μ2 ≤ 0
|
||||
· by_cases hcz : c ≤ -μ2 ^ 2 / (4 * 𝓵)
|
||||
|
@ -229,7 +230,7 @@ lemma isBounded_𝓵_nonneg {μ2 𝓵 : ℝ} (h : IsBounded μ2 𝓵) :
|
|||
have hc2 := hc φ x
|
||||
rw [hφ] at hc2
|
||||
linarith
|
||||
· simp at hcz
|
||||
· rw [not_le] at hcz
|
||||
have hcm1 : ∃ φ x, potential μ2 𝓵 φ x = -μ2 ^ 2 / (4 * 𝓵) - 1 := by
|
||||
rw [propext (exist_sol_iff_of_neg_𝓵 μ2 hl _)]
|
||||
apply Or.inr
|
||||
|
@ -238,7 +239,7 @@ lemma isBounded_𝓵_nonneg {μ2 𝓵 : ℝ} (h : IsBounded μ2 𝓵) :
|
|||
have hc2 := hc φ x
|
||||
rw [hφ] at hc2
|
||||
linarith
|
||||
· simp at hμ
|
||||
· rw [not_le] at hμ
|
||||
by_cases hcz : c ≤ 0
|
||||
· have hcm1 : ∃ φ x, potential μ2 𝓵 φ x = c - 1 := by
|
||||
rw [propext (exist_sol_iff_of_neg_𝓵 μ2 hl (c - 1))]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue