refactor: Replace more simp with simp only

This commit is contained in:
jstoobysmith 2024-09-06 07:08:08 -04:00
parent b8cd3928e7
commit 750c4048f6
11 changed files with 76 additions and 55 deletions

View file

@ -158,7 +158,8 @@ theorem rotate_fst_zero_snd_real (φ : HiggsVec) :
∃ (g : GaugeGroup), rep g φ = ![0, Complex.ofReal ‖φ‖] := by
by_cases h : φ = 0
· use ⟨1, 1, 1⟩
simp [h]
simp only [Prod.mk_one_one, _root_.map_one, h, map_zero, Nat.succ_eq_add_one, Nat.reduceAdd,
norm_zero]
ext i
fin_cases i <;> rfl
· use rotateGuageGroup h

View file

@ -89,7 +89,8 @@ lemma eq_zero_at (μ2 : ) {𝓵 : } (h : 𝓵 ≠ 0) (φ : HiggsField) (x
rw [hV] at h1
have h2 : ‖φ‖_H ^ 2 x * (𝓵 * ‖φ‖_H ^ 2 x + - μ2) = 0 := by
linear_combination h1
simp at h2
simp only [normSq, mul_eq_zero, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff,
norm_eq_zero] at h2
cases' h2 with h2 h2
· simp_all
· apply Or.inr
@ -139,7 +140,7 @@ lemma pot_le_zero_of_neg_𝓵 (μ2 : ) {𝓵 : } (h : 𝓵 < 0) (φ : Higg
(0 < μ2 ∧ potential μ2 𝓵 φ x ≤ 0) μ2 ≤ 0 := by
by_cases hμ2 : μ2 ≤ 0
· simp [hμ2]
simp [potential, hμ2]
simp only [potential, normSq, neg_mul, neg_add_le_iff_le_add, add_zero, hμ2, or_false]
apply And.intro (lt_of_not_ge hμ2)
have h1 : 0 ≤ μ2 * ‖φ x‖ ^ 2 := by
refine Left.mul_nonneg ?ha ?hb
@ -163,7 +164,7 @@ lemma exist_sol_iff_of_neg_𝓵 (μ2 : ) {𝓵 : } (h𝓵 : 𝓵 < 0) (c :
ring_nf
let a := (μ2 - Real.sqrt (discrim 𝓵 (- μ2) (- c))) / (2 * 𝓵)
have ha : 0 ≤ a := by
simp [a, discrim]
simp only [discrim, even_two, Even.neg_pow, mul_neg, sub_neg_eq_add, a]
rw [div_nonneg_iff]
refine Or.inr (And.intro ?_ ?_)
· rw [sub_nonpos]
@ -188,7 +189,7 @@ lemma exist_sol_iff_of_neg_𝓵 (μ2 : ) {𝓵 : } (h𝓵 : 𝓵 < 0) (c :
trans 𝓵 * a * a + (- μ2) * a + (- c)
· ring
have hd : 0 ≤ (discrim 𝓵 (-μ2) (-c)) := by
simp [discrim]
simp only [discrim, even_two, Even.neg_pow, mul_neg, sub_neg_eq_add]
rcases h with h | h
· refine Left.add_nonneg (sq_nonneg μ2) ?_
refine mul_nonneg_of_nonpos_of_nonpos ?_ h.2
@ -216,7 +217,7 @@ def IsBounded (μ2 𝓵 : ) : Prop :=
lemma isBounded_𝓵_nonneg {μ2 𝓵 : } (h : IsBounded μ2 𝓵) :
0 ≤ 𝓵 := by
by_contra hl
simp at hl
rw [not_le] at hl
obtain ⟨c, hc⟩ := h
by_cases hμ : μ2 ≤ 0
· by_cases hcz : c ≤ -μ2 ^ 2 / (4 * 𝓵)
@ -229,7 +230,7 @@ lemma isBounded_𝓵_nonneg {μ2 𝓵 : } (h : IsBounded μ2 𝓵) :
have hc2 := hc φ x
rw [hφ] at hc2
linarith
· simp at hcz
· rw [not_le] at hcz
have hcm1 : ∃ φ x, potential μ2 𝓵 φ x = -μ2 ^ 2 / (4 * 𝓵) - 1 := by
rw [propext (exist_sol_iff_of_neg_𝓵 μ2 hl _)]
apply Or.inr
@ -238,7 +239,7 @@ lemma isBounded_𝓵_nonneg {μ2 𝓵 : } (h : IsBounded μ2 𝓵) :
have hc2 := hc φ x
rw [hφ] at hc2
linarith
· simp at hμ
· rw [not_le] at hμ
by_cases hcz : c ≤ 0
· have hcm1 : ∃ φ x, potential μ2 𝓵 φ x = c - 1 := by
rw [propext (exist_sol_iff_of_neg_𝓵 μ2 hl (c - 1))]