refactor: Lorentz action on tensors

This commit is contained in:
jstoobysmith 2024-07-16 16:58:42 -04:00
parent d385f72087
commit 757afbc60f
3 changed files with 298 additions and 119 deletions

View file

@ -17,12 +17,13 @@ The Lorentz action is currently only defined for finite and decidable types `X`.
namespace RealLorentzTensor
variable {d : } {X : Type} [Fintype X] [DecidableEq X] (T : RealLorentzTensor d X) (c : X → Colors)
variable {d : } {X Y : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
variable (T : RealLorentzTensor d X) (c : X → Colors)
variable (Λ Λ' : LorentzGroup d)
open LorentzGroup
open BigOperators
instance : Fintype (IndexValue d c) := Pi.fintype
variable {μ : Colors}
/-- Monoid homomorphism from the Lorentz group to matrices indexed by `ColorsIndex d μ` for a
@ -56,88 +57,159 @@ def colorMatrix (μ : Colors) : LorentzGroup d →* Matrix (ColorsIndex d μ) (C
Matrix.transpose_mul, Matrix.transpose_apply]
rfl
/-- A real number occuring in the action of the Lorentz group on Lorentz tensors. -/
@[simp]
def prodColorMatrixOnIndexValue (i j : IndexValue d c) : :=
∏ x, colorMatrix (c x) Λ (i x) (j x)
/-- `prodColorMatrixOnIndexValue` evaluated at `1` on the diagonal returns `1`. -/
lemma one_prodColorMatrixOnIndexValue_on_diag (i : IndexValue d c) :
prodColorMatrixOnIndexValue c 1 i i = 1 := by
simp only [prodColorMatrixOnIndexValue]
rw [Finset.prod_eq_one]
intro x _
simp only [colorMatrix, MonoidHom.map_one, Matrix.one_apply]
lemma colorMatrix_cast {μ ν : Colors} (h : μ = ν) (Λ : LorentzGroup d) :
colorMatrix μ Λ =
Matrix.reindex (castColorsIndex h).symm (castColorsIndex h).symm (colorMatrix ν Λ) := by
subst h
rfl
/-- `prodColorMatrixOnIndexValue` evaluated at `1` off the diagonal returns `0`. -/
lemma one_prodColorMatrixOnIndexValue_off_diag {i j : IndexValue d c} (hij : j ≠ i) :
prodColorMatrixOnIndexValue c 1 i j = 0 := by
simp only [prodColorMatrixOnIndexValue]
obtain ⟨x, hijx⟩ := Function.ne_iff.mp hij
rw [@Finset.prod_eq_zero _ _ _ _ _ x]
exact Finset.mem_univ x
simp only [map_one]
exact Matrix.one_apply_ne' hijx
/-- A real number occuring in the action of the Lorentz group on Lorentz tensors. -/
@[simps!]
def toTensorRepMat {c : X → Colors} :
LorentzGroup d →* Matrix (IndexValue d c) (IndexValue d c) where
toFun Λ := fun i j => ∏ x, colorMatrix (c x) Λ (i x) (j x)
map_one' := by
ext i j
by_cases hij : i = j
· subst hij
simp only [map_one, Matrix.one_apply_eq, Finset.prod_const_one]
· obtain ⟨x, hijx⟩ := Function.ne_iff.mp hij
simp only [map_one]
rw [@Finset.prod_eq_zero _ _ _ _ _ x]
exact Eq.symm (Matrix.one_apply_ne' fun a => hij (id (Eq.symm a)))
exact Finset.mem_univ x
exact Matrix.one_apply_ne' (id (Ne.symm hijx))
map_mul' Λ Λ' := by
ext i j
rw [Matrix.mul_apply]
trans ∑ (k : IndexValue d c), ∏ x,
(colorMatrix (c x) Λ (i x) (k x)) * (colorMatrix (c x) Λ' (k x) (j x))
have h1 : ∑ (k : IndexValue d c), ∏ x,
(colorMatrix (c x) Λ (i x) (k x)) * (colorMatrix (c x) Λ' (k x) (j x)) =
∏ x, ∑ y, (colorMatrix (c x) Λ (i x) y) * (colorMatrix (c x) Λ' y (j x)) := by
rw [Finset.prod_sum]
simp only [Finset.prod_attach_univ, Finset.sum_univ_pi]
apply Finset.sum_congr
simp only [IndexValue, Fintype.piFinset_univ]
intro x _
rfl
rw [h1]
simp only [map_mul]
exact Finset.prod_congr rfl (fun x _ => rfl)
refine Finset.sum_congr rfl (fun k _ => ?_)
rw [Finset.prod_mul_distrib]
lemma mul_prodColorMatrixOnIndexValue (i j : IndexValue d c) :
prodColorMatrixOnIndexValue c (Λ * Λ') i j =
∑ (k : IndexValue d c),
∏ x, (colorMatrix (c x) Λ (i x) (k x)) * (colorMatrix (c x) Λ' (k x) (j x)) := by
have h1 : ∑ (k : IndexValue d c), ∏ x,
(colorMatrix (c x) Λ (i x) (k x)) * (colorMatrix (c x) Λ' (k x) (j x)) =
∏ x, ∑ y, (colorMatrix (c x) Λ (i x) y) * (colorMatrix (c x) Λ' y (j x)) := by
rw [Finset.prod_sum]
simp only [Finset.prod_attach_univ, Finset.sum_univ_pi]
apply Finset.sum_congr
simp only [IndexValue, Fintype.piFinset_univ]
intro x _
rfl
rw [h1]
simp only [prodColorMatrixOnIndexValue, map_mul]
exact Finset.prod_congr rfl (fun x _ => rfl)
lemma toTensorRepMat_mul' (i j : IndexValue d c) :
toTensorRepMat (Λ * Λ') i j = ∑ (k : IndexValue d c),
∏ x, colorMatrix (c x) Λ (i x) (k x) * colorMatrix (c x) Λ' (k x) (j x) := by
simp [Matrix.mul_apply]
refine Finset.sum_congr rfl (fun k _ => ?_)
rw [Finset.prod_mul_distrib]
rfl
@[simp]
lemma toTensorRepMat_on_sum {cX : X → Colors} {cY : Y → Colors}
(i j : IndexValue d (sumElimIndexColor cX cY)) :
toTensorRepMat Λ i j = toTensorRepMat Λ (inlIndexValue i) (inlIndexValue j) *
toTensorRepMat Λ (inrIndexValue i) (inrIndexValue j) := by
simp only [toTensorRepMat_apply]
rw [Fintype.prod_sum_type]
rfl
open Marked
lemma toTensorRepMap_on_splitIndexValue (T : Marked d X n)
(i : T.UnmarkedIndexValue) (k : T.MarkedIndexValue) (j : IndexValue d T.color) :
toTensorRepMat Λ (splitIndexValue.symm (i, k)) j =
toTensorRepMat Λ i (toUnmarkedIndexValue j) *
toTensorRepMat Λ k (toMarkedIndexValue j) := by
simp only [toTensorRepMat_apply]
rw [Fintype.prod_sum_type]
rfl
/-!
## Definition of the Lorentz group action on Real Lorentz Tensors.
-/
/-- Action of the Lorentz group on `X`-indexed Real Lorentz Tensors. -/
@[simps!]
instance lorentzAction : MulAction (LorentzGroup d) (RealLorentzTensor d X) where
smul Λ T := {color := T.color,
coord := fun i => ∑ j, prodColorMatrixOnIndexValue T.color Λ i j * T.coord j}
coord := fun i => ∑ j, toTensorRepMat Λ i j * T.coord j}
one_smul T := by
refine ext' rfl ?_
funext i
simp only [HSMul.hSMul, map_one]
erw [Finset.sum_eq_single_of_mem i]
rw [one_prodColorMatrixOnIndexValue_on_diag]
simp only [one_mul, IndexValue]
simp only [Matrix.one_apply_eq, one_mul, IndexValue]
rfl
exact Finset.mem_univ i
intro j _ hij
rw [one_prodColorMatrixOnIndexValue_off_diag]
simp only [zero_mul]
exact hij
exact fun j _ hij => mul_eq_zero.mpr (Or.inl (Matrix.one_apply_ne' hij))
mul_smul Λ Λ' T := by
refine ext' rfl ?_
simp only [HSMul.hSMul]
funext i
have h1 : ∑ j : IndexValue d T.color, prodColorMatrixOnIndexValue T.color (Λ * Λ') i j
have h1 : ∑ j : IndexValue d T.color, toTensorRepMat (Λ * Λ') i j
* T.coord j = ∑ j : IndexValue d T.color, ∑ (k : IndexValue d T.color),
(∏ x, ((colorMatrix (T.color x) Λ (i x) (k x)) *
(colorMatrix (T.color x) Λ' (k x) (j x)))) * T.coord j := by
refine Finset.sum_congr rfl (fun j _ => ?_)
rw [mul_prodColorMatrixOnIndexValue, Finset.sum_mul]
rw [toTensorRepMat_mul', Finset.sum_mul]
rw [h1]
rw [Finset.sum_comm]
refine Finset.sum_congr rfl (fun j _ => ?_)
rw [Finset.mul_sum]
refine Finset.sum_congr rfl (fun k _ => ?_)
simp only [prodColorMatrixOnIndexValue, IndexValue]
simp only [toTensorRepMat, IndexValue]
rw [← mul_assoc]
congr
rw [Finset.prod_mul_distrib]
rfl
/-!
## The Lorentz action on marked tensors.
-/
@[simps!]
instance : MulAction (LorentzGroup d) (Marked d X n) := lorentzAction
instance : MulAction (LorentzGroup d) (Marked d X n) := lorentzAction
lemma lorentzAction_on_splitIndexValue' (T : Marked d X n)
(i : T.UnmarkedIndexValue) (k : T.MarkedIndexValue) :
(Λ • T).coord (splitIndexValue.symm (i, k)) =
∑ (x : T.UnmarkedIndexValue), ∑ (y : T.MarkedIndexValue),
(toTensorRepMat Λ i x * toTensorRepMat Λ k y) * T.coord (splitIndexValue.symm (x, y)) := by
erw [lorentzAction_smul_coord]
erw [← Equiv.sum_comp splitIndexValue.symm]
rw [Fintype.sum_prod_type]
refine Finset.sum_congr rfl (fun x _ => ?_)
refine Finset.sum_congr rfl (fun y _ => ?_)
erw [toTensorRepMap_on_splitIndexValue]
rfl
@[simp]
lemma lorentzAction_on_splitIndexValue (T : Marked d X n)
(i : T.UnmarkedIndexValue) (k : T.MarkedIndexValue) :
(Λ • T).coord (splitIndexValue.symm (i, k)) =
∑ (x : T.UnmarkedIndexValue), toTensorRepMat Λ i x *
∑ (y : T.MarkedIndexValue), toTensorRepMat Λ k y *
T.coord (splitIndexValue.symm (x, y)) := by
rw [lorentzAction_on_splitIndexValue']
refine Finset.sum_congr rfl (fun x _ => ?_)
rw [Finset.mul_sum]
refine Finset.sum_congr rfl (fun y _ => ?_)
rw [NonUnitalRing.mul_assoc]
/-!
## Properties of the Lorentz action.
-/
/-- The action on an empty Lorentz tensor is trivial. -/
lemma lorentzAction_on_isEmpty [IsEmpty X] (Λ : LorentzGroup d) (T : RealLorentzTensor d X) :
@ -146,8 +218,62 @@ lemma lorentzAction_on_isEmpty [IsEmpty X] (Λ : LorentzGroup d) (T : RealLorent
funext i
erw [lorentzAction_smul_coord]
simp only [Finset.univ_unique, Finset.univ_eq_empty, Finset.prod_empty, one_mul,
Finset.sum_singleton]
simp only [IndexValue, Unique.eq_default]
Finset.sum_singleton, toTensorRepMat_apply]
erw [toTensorRepMat_apply]
simp only [IndexValue, toTensorRepMat, Unique.eq_default]
rw [@mul_left_eq_self₀]
exact Or.inl rfl
/-- The Lorentz action commutes with `congrSet`. -/
lemma lorentzAction_comm_congrSet (f : X ≃ Y) (Λ : LorentzGroup d) (T : RealLorentzTensor d X) :
congrSet f (Λ • T) = Λ • (congrSet f T) := by
refine ext' rfl ?_
funext i
erw [lorentzAction_smul_coord, lorentzAction_smul_coord]
erw [← Equiv.sum_comp (congrSetIndexValue d f T.color)]
refine Finset.sum_congr rfl (fun j _ => ?_)
simp [toTensorRepMat]
erw [← Equiv.prod_comp f]
apply Or.inl
congr
funext x
have h1 : (T.color (f.symm (f x))) = T.color x := by
simp only [Equiv.symm_apply_apply]
rw [colorMatrix_cast h1]
simp only [Matrix.reindex_apply, Equiv.symm_symm, Matrix.submatrix_apply]
erw [castColorsIndex_comp_congrSetIndexValue]
apply congrFun
apply congrArg
symm
refine cast_eq_iff_heq.mpr ?_
simp only [congrSetIndexValue, Equiv.piCongrLeft'_symm_apply, heq_eqRec_iff_heq, heq_eq_eq]
rfl
open Marked
lemma lorentzAction_comm_mul (T : Marked d X 1) (S : Marked d Y 1)
(h : T.markedColor 0 = τ (S.markedColor 1)) :
mul (Λ • T) (Λ • S) h = Λ • mul T S h := by
refine ext' rfl ?_
funext i
trans ∑ j, toTensorRepMat Λ (inlIndexValue i) (inlIndexValue j) *
toTensorRepMat Λ (inrIndexValue i) (inrIndexValue j)
* (mul T S h).coord j
swap
refine Finset.sum_congr rfl (fun j _ => ?_)
erw [toTensorRepMat_on_sum]
rfl
change ∑ x, (∑ j, toTensorRepMat Λ (splitIndexValue.symm
(inlIndexValue i, T.oneMarkedIndexValue x)) j * T.coord j) *
(∑ k, toTensorRepMat Λ _ k * S.coord k) = _
trans ∑ x, (∑ j,
toTensorRepMat Λ (inlIndexValue i) (toUnmarkedIndexValue j)
* toTensorRepMat Λ (T.oneMarkedIndexValue x) (toMarkedIndexValue j)
* T.coord j) *
sorry
/-! TODO: Show that the Lorentz action commutes with multiplication. -/
/-! TODO: Show that the Lorentz action commutes with contraction. -/