diff --git a/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/Lemmas.lean b/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/Lemmas.lean index ee85268..405a110 100644 --- a/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/Lemmas.lean +++ b/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/Lemmas.lean @@ -216,6 +216,11 @@ lemma anPart_mul_normalOrder_ofFieldOpList_eq_superCommute (ฯ† : ๐“•.FieldOp) -/ +/-- +The proof of this result ultimetly depends on +- `superCommuteF_ofCrAnListF_ofFieldOpListF_eq_sum` +- `normalOrderSign_eraseIdx` +-/ lemma ofCrAnFieldOp_superCommute_normalOrder_ofCrAnFieldOpList_sum (ฯ† : ๐“•.CrAnFieldOp) (ฯ†s : List ๐“•.CrAnFieldOp) : [ofCrAnFieldOp ฯ†, ๐“(ofCrAnFieldOpList ฯ†s)]โ‚› = โˆ‘ n : Fin ฯ†s.length, ๐“ข(๐“• |>โ‚› ฯ†, ๐“• |>โ‚› (ฯ†s.take n)) โ€ข [ofCrAnFieldOp ฯ†, ofCrAnFieldOp ฯ†s[n]]โ‚› @@ -329,6 +334,9 @@ noncomputable def contractStateAtIndex (ฯ† : ๐“•.FieldOp) (ฯ†s : List ๐“•.Fiel /-- For a field specification `๐“•`, the following relation holds in the algebra `๐“•.FieldOpAlgebra`, `ฯ† * ๐“(ฯ†โ‚€ฯ†โ‚โ€ฆฯ†โ‚™) = ๐“(ฯ†ฯ†โ‚€ฯ†โ‚โ€ฆฯ†โ‚™) + โˆ‘ i, (๐“ข(ฯ†,ฯ†โ‚€ฯ†โ‚โ€ฆฯ†แตขโ‚‹โ‚) โ€ข [anPartF ฯ†, ฯ†แตข]โ‚›) * ๐“(ฯ†โ‚€ฯ†โ‚โ€ฆฯ†แตขโ‚‹โ‚ฯ†แตขโ‚Šโ‚โ€ฆฯ†โ‚™)`. + +The proof of this ultimently depends on : +- `ofCrAnFieldOp_superCommute_normalOrder_ofCrAnFieldOpList_sum` -/ lemma ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum (ฯ† : ๐“•.FieldOp) (ฯ†s : List ๐“•.FieldOp) : ofFieldOp ฯ† * ๐“(ofFieldOpList ฯ†s) = diff --git a/HepLean/PerturbationTheory/FieldOpAlgebra/WickTerm.lean b/HepLean/PerturbationTheory/FieldOpAlgebra/WickTerm.lean index 0f5903c..5b0532a 100644 --- a/HepLean/PerturbationTheory/FieldOpAlgebra/WickTerm.lean +++ b/HepLean/PerturbationTheory/FieldOpAlgebra/WickTerm.lean @@ -164,17 +164,16 @@ lemma wickTerm_insert_some (ฯ† : ๐“•.FieldOp) (ฯ†s : List ๐“•.FieldOp) exact hg' /-- -Given a Wick contraction `ฯ†sฮ›` of `ฯ†s = ฯ†โ‚€ฯ†โ‚โ€ฆฯ†โ‚™` and an `i`, we have that -`(ฯ†sฮ›.sign โ€ข ฯ†sฮ›.timeContract ๐“ž) * ๐“ž.crAnF (ฯ† * ๐“แถ ([ฯ†sฮ›]แต˜แถœ))` -is equal to the product of -- the exchange sign of `ฯ†` and `ฯ†โ‚€ฯ†โ‚โ€ฆฯ†แตขโ‚‹โ‚`, -- the sum of `((ฯ†sฮ› โ†ฉฮ› ฯ† i k).sign โ€ข (ฯ†sฮ› โ†ฉฮ› ฯ† i k).timeContract ๐“ž) * ๐“ž.crAnF ๐“แถ ([ฯ†sฮ› โ†ฉฮ› ฯ† i k]แต˜แถœ)` - over all `k` in `Option ฯ†sฮ›.uncontracted`. +Let `ฯ†sฮ›` be a Wick contraction for `ฯ†s = ฯ†โ‚€ฯ†โ‚โ€ฆฯ†โ‚™`. Let `ฯ†` be a field with time +greater then or equal to all the fields in `ฯ†s`. Let `i` be a in `Fin ฯ†s.length.succ` such that +all files in `ฯ†โ‚€โ€ฆฯ†แตขโ‚‹โ‚` have time strictly less then `ฯ†`. Then +`ฯ† * ฯ†sฮ›.wickTerm = ๐“ข(ฯ†, ฯ†โ‚€โ€ฆฯ†แตขโ‚‹โ‚) โ€ข โˆ‘ k, (ฯ†sฮ› โ†ฉฮ› ฯ† i k).wickTerm` +where the sum is over all `k` in `Option ฯ†sฮ›.uncontracted` (so either `none` or `some k`). -The proof of this result primarily depends on -- `crAnF_ofFieldOpF_mul_normalOrderF_ofFieldOpFsList_eq_sum` to rewrite `๐“ž.crAnF (ฯ† * ๐“แถ ([ฯ†sฮ›]แต˜แถœ))` -- `wick_term_none_eq_wick_term_cons` -- `wick_term_some_eq_wick_term_optionEraseZ` +The proof of proceeds as follows: +- `ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum` is used to expand `ฯ† ๐“([ฯ†sฮ›]แต˜แถœ)` as + a sum over `k` in `Option ฯ†sฮ›.uncontracted` of terms involving `[ฯ†, ฯ†s[k]]` etc. +- Then `wickTerm_insert_none` and `wickTerm_insert_some` are used to equate terms. -/ lemma mul_wickTerm_eq_sum (ฯ† : ๐“•.FieldOp) (ฯ†s : List ๐“•.FieldOp) (i : Fin ฯ†s.length.succ) (ฯ†sฮ› : WickContraction ฯ†s.length) (hlt : โˆ€ (k : Fin ฯ†s.length), timeOrderRel ฯ† ฯ†s[k]) diff --git a/scripts/MetaPrograms/notes.lean b/scripts/MetaPrograms/notes.lean index 692d4a6..1db6e49 100644 --- a/scripts/MetaPrograms/notes.lean +++ b/scripts/MetaPrograms/notes.lean @@ -143,6 +143,7 @@ def perturbationTheory : Note where .name `FieldSpecification.FieldOpFreeAlgebra.ofFieldOpListF, .name `FieldSpecification.FieldOpFreeAlgebra.fieldOpFreeAlgebraGrade, .name `FieldSpecification.FieldOpFreeAlgebra.superCommuteF, + .name `FieldSpecification.FieldOpFreeAlgebra.superCommuteF_ofCrAnListF_ofFieldOpListF_eq_sum, .h2 "Field-operator algebra", .name `FieldSpecification.FieldOpAlgebra, .name `FieldSpecification.FieldOpAlgebra.fieldOpAlgebraGrade, @@ -158,6 +159,10 @@ def perturbationTheory : Note where .name `FieldSpecification.normalOrderSign, .name `FieldSpecification.FieldOpFreeAlgebra.normalOrderF, .name `FieldSpecification.FieldOpAlgebra.normalOrder, + .h2 "Some lemmas", + .name `FieldSpecification.normalOrderSign_eraseIdx, + .name `FieldSpecification.FieldOpAlgebra.ofCrAnFieldOp_superCommute_normalOrder_ofCrAnFieldOpList_sum, + .name `FieldSpecification.FieldOpAlgebra.ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum, .h1 "Wick Contractions", .h2 "Definition", .name `WickContraction, @@ -179,6 +184,16 @@ def perturbationTheory : Note where .h1 "Time and static contractions", .h1 "Wick terms", .name `WickContraction.wickTerm, + .name `WickContraction.wickTerm_empty_nil, + .name `WickContraction.wickTerm_insert_none, + .name `WickContraction.wickTerm_insert_some, + .name `WickContraction.mul_wickTerm_eq_sum, + .h1 "Static wick terms", + .name `WickContraction.staticWickTerm, + .name `WickContraction.staticWickTerm_empty_nil, + .name `WickContraction.staticWickTerm_insert_zero_none, + .name `WickContraction.staticWickTerm_insert_zero_some, + .name `WickContraction.mul_staticWickTerm_eq_sum, .h1 "The three Wick's theorems", .name `FieldSpecification.wicks_theorem, .name `FieldSpecification.FieldOpAlgebra.static_wick_theorem,