docs: Update docs related to Wick's theorem
This commit is contained in:
parent
d61cc2ee4d
commit
759f204ed5
3 changed files with 32 additions and 10 deletions
|
@ -216,6 +216,11 @@ lemma anPart_mul_normalOrder_ofFieldOpList_eq_superCommute (φ : 𝓕.FieldOp)
|
|||
|
||||
-/
|
||||
|
||||
/--
|
||||
The proof of this result ultimetly depends on
|
||||
- `superCommuteF_ofCrAnListF_ofFieldOpListF_eq_sum`
|
||||
- `normalOrderSign_eraseIdx`
|
||||
-/
|
||||
lemma ofCrAnFieldOp_superCommute_normalOrder_ofCrAnFieldOpList_sum (φ : 𝓕.CrAnFieldOp)
|
||||
(φs : List 𝓕.CrAnFieldOp) : [ofCrAnFieldOp φ, 𝓝(ofCrAnFieldOpList φs)]ₛ = ∑ n : Fin φs.length,
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ (φs.take n)) • [ofCrAnFieldOp φ, ofCrAnFieldOp φs[n]]ₛ
|
||||
|
@ -329,6 +334,9 @@ noncomputable def contractStateAtIndex (φ : 𝓕.FieldOp) (φs : List 𝓕.Fiel
|
|||
/--
|
||||
For a field specification `𝓕`, the following relation holds in the algebra `𝓕.FieldOpAlgebra`,
|
||||
`φ * 𝓝(φ₀φ₁…φₙ) = 𝓝(φφ₀φ₁…φₙ) + ∑ i, (𝓢(φ,φ₀φ₁…φᵢ₋₁) • [anPartF φ, φᵢ]ₛ) * 𝓝(φ₀φ₁…φᵢ₋₁φᵢ₊₁…φₙ)`.
|
||||
|
||||
The proof of this ultimently depends on :
|
||||
- `ofCrAnFieldOp_superCommute_normalOrder_ofCrAnFieldOpList_sum`
|
||||
-/
|
||||
lemma ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
|
||||
ofFieldOp φ * 𝓝(ofFieldOpList φs) =
|
||||
|
|
|
@ -164,17 +164,16 @@ lemma wickTerm_insert_some (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
|||
exact hg'
|
||||
|
||||
/--
|
||||
Given a Wick contraction `φsΛ` of `φs = φ₀φ₁…φₙ` and an `i`, we have that
|
||||
`(φsΛ.sign • φsΛ.timeContract 𝓞) * 𝓞.crAnF (φ * 𝓝ᶠ([φsΛ]ᵘᶜ))`
|
||||
is equal to the product of
|
||||
- the exchange sign of `φ` and `φ₀φ₁…φᵢ₋₁`,
|
||||
- the sum of `((φsΛ ↩Λ φ i k).sign • (φsΛ ↩Λ φ i k).timeContract 𝓞) * 𝓞.crAnF 𝓝ᶠ([φsΛ ↩Λ φ i k]ᵘᶜ)`
|
||||
over all `k` in `Option φsΛ.uncontracted`.
|
||||
Let `φsΛ` be a Wick contraction for `φs = φ₀φ₁…φₙ`. Let `φ` be a field with time
|
||||
greater then or equal to all the fields in `φs`. Let `i` be a in `Fin φs.length.succ` such that
|
||||
all files in `φ₀…φᵢ₋₁` have time strictly less then `φ`. Then
|
||||
`φ * φsΛ.wickTerm = 𝓢(φ, φ₀…φᵢ₋₁) • ∑ k, (φsΛ ↩Λ φ i k).wickTerm`
|
||||
where the sum is over all `k` in `Option φsΛ.uncontracted` (so either `none` or `some k`).
|
||||
|
||||
The proof of this result primarily depends on
|
||||
- `crAnF_ofFieldOpF_mul_normalOrderF_ofFieldOpFsList_eq_sum` to rewrite `𝓞.crAnF (φ * 𝓝ᶠ([φsΛ]ᵘᶜ))`
|
||||
- `wick_term_none_eq_wick_term_cons`
|
||||
- `wick_term_some_eq_wick_term_optionEraseZ`
|
||||
The proof of proceeds as follows:
|
||||
- `ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum` is used to expand `φ 𝓝([φsΛ]ᵘᶜ)` as
|
||||
a sum over `k` in `Option φsΛ.uncontracted` of terms involving `[φ, φs[k]]` etc.
|
||||
- Then `wickTerm_insert_none` and `wickTerm_insert_some` are used to equate terms.
|
||||
-/
|
||||
lemma mul_wickTerm_eq_sum (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (i : Fin φs.length.succ)
|
||||
(φsΛ : WickContraction φs.length) (hlt : ∀ (k : Fin φs.length), timeOrderRel φ φs[k])
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue