refactor: Lint
This commit is contained in:
parent
e22483c780
commit
75d864df77
16 changed files with 34 additions and 42 deletions
|
@ -10,7 +10,6 @@ Authors: Joseph Tooby-Smith
|
|||
This directory is currently a place holder.
|
||||
Please feel free to contribute!
|
||||
|
||||
|
||||
Some directories which are NOT currently place holders are:
|
||||
- Mathematics
|
||||
- Meta
|
||||
|
@ -19,5 +18,4 @@ Some directories which are NOT currently place holders are:
|
|||
- Quantum Mechanics
|
||||
- Relativity
|
||||
|
||||
|
||||
-/
|
||||
|
|
|
@ -18,5 +18,4 @@ Some directories which are NOT currently place holders are:
|
|||
- Quantum Mechanics
|
||||
- Relativity
|
||||
|
||||
|
||||
-/
|
||||
|
|
|
@ -113,7 +113,7 @@ lemma smooth_innerProd (φ1 φ2 : HiggsField) : ContMDiff 𝓘(ℝ, SpaceTime)
|
|||
the function `SpaceTime → ℝ` obtained by taking the square norm of the
|
||||
pointwise Higgs vector. In other words, `normSq φ x = ‖φ x‖ ^ 2`.
|
||||
|
||||
The notation `‖φ‖_H^2` is used for the `normSq φ` -/
|
||||
The notation `‖φ‖_H^2` is used for the `normSq φ`. -/
|
||||
@[simp]
|
||||
def normSq (φ : HiggsField) : SpaceTime → ℝ := fun x => ‖φ x‖ ^ 2
|
||||
|
||||
|
|
|
@ -134,7 +134,7 @@ lemma one_over_ξ : 1/Q.ξ = √(Q.m * Q.ω / Q.ℏ) := by
|
|||
have := Q.hℏ
|
||||
field_simp [ξ]
|
||||
|
||||
lemma ξ_inverse : Q.ξ⁻¹ = √(Q.m * Q.ω / Q.ℏ):= by
|
||||
lemma ξ_inverse : Q.ξ⁻¹ = √(Q.m * Q.ω / Q.ℏ) := by
|
||||
rw [inv_eq_one_div]
|
||||
exact one_over_ξ Q
|
||||
|
||||
|
@ -182,7 +182,7 @@ lemma schrodingerOperator_eq (ψ : ℝ → ℂ) :
|
|||
|
||||
/-- The schrodinger operator written in terms of `ξ`. -/
|
||||
lemma schrodingerOperator_eq_ξ (ψ : ℝ → ℂ) : Q.schrodingerOperator ψ =
|
||||
fun x => (Q.ℏ ^2 / (2 * Q.m)) * (- (deriv (deriv ψ) x) + (1/Q.ξ^2 )^2 * x^2 * ψ x) := by
|
||||
fun x => (Q.ℏ ^2 / (2 * Q.m)) * (- (deriv (deriv ψ) x) + (1/Q.ξ^2)^2 * x^2 * ψ x) := by
|
||||
funext x
|
||||
simp [schrodingerOperator_eq, ξ_sq, ξ_inverse, ξ_ne_zero, ξ_pos, ξ_abs, ← Complex.ofReal_pow]
|
||||
have hm' := Complex.ofReal_ne_zero.mpr Q.m_ne_zero
|
||||
|
|
|
@ -175,7 +175,7 @@ lemma orthogonal_physHermite_of_mem_orthogonal (f : ℝ → ℂ) (hf : MemHS f)
|
|||
or_false, Real.sqrt_nonneg] at h1
|
||||
have h0 : n ! ≠ 0 := by
|
||||
exact factorial_ne_zero n
|
||||
have h0' : ¬ (√Q.ξ = 0 ∨ √Real.pi = 0):= by
|
||||
have h0' : ¬ (√Q.ξ = 0 ∨ √Real.pi = 0) := by
|
||||
simpa using And.intro (Real.sqrt_ne_zero'.mpr Q.ξ_pos) (Real.sqrt_ne_zero'.mpr Real.pi_pos)
|
||||
simp only [h0, h0', or_self, false_or] at h1
|
||||
rw [← h1]
|
||||
|
|
|
@ -43,7 +43,7 @@ lemma eigenfunction_eq (n : ℕ) :
|
|||
ring
|
||||
|
||||
lemma eigenfunction_zero : Q.eigenfunction 0 = fun (x : ℝ) =>
|
||||
(1/ √(√Real.pi * Q.ξ)) * Complex.exp (- x^2 / (2 * Q.ξ^2)):= by
|
||||
(1/ √(√Real.pi * Q.ξ)) * Complex.exp (- x^2 / (2 * Q.ξ^2)) := by
|
||||
funext x
|
||||
simp [eigenfunction]
|
||||
|
||||
|
|
|
@ -158,7 +158,6 @@ lemma deriv_deriv_eigenfunction_zero (x : ℝ) : deriv (deriv (Q.eigenfunction 0
|
|||
simp only [Complex.ofReal_one, Complex.ofReal_pow, one_mul, one_pow, inv_pow]
|
||||
ring
|
||||
|
||||
|
||||
lemma deriv_deriv_eigenfunction_succ (n : ℕ) (x : ℝ) :
|
||||
deriv (fun x => deriv (Q.eigenfunction (n + 1)) x) x =
|
||||
Complex.ofReal (1/√(2 ^ (n + 1) * (n + 1) !) * (1/Q.ξ)) *
|
||||
|
@ -195,7 +194,7 @@ lemma deriv_deriv_eigenfunction (n : ℕ) (x : ℝ) :
|
|||
match n with
|
||||
| 0 => simpa using Q.deriv_deriv_eigenfunction_zero x
|
||||
| n + 1 =>
|
||||
trans Complex.ofReal (1/Real.sqrt (2 ^ (n + 1) * (n + 1) !) ) *
|
||||
trans Complex.ofReal (1/Real.sqrt (2 ^ (n + 1) * (n + 1) !)) *
|
||||
(((- 1 / Q.ξ ^ 2) * (2 * (n + 1)
|
||||
+ (1 + (- 1/ Q.ξ ^ 2) * x ^ 2)) *
|
||||
(physHermite (n + 1) (x/Q.ξ))) * Q.eigenfunction 0 x)
|
||||
|
@ -223,7 +222,7 @@ lemma deriv_deriv_eigenfunction (n : ℕ) (x : ℝ) :
|
|||
trans (- 1/ Q.ξ^2) * (2 * (n + 1) *
|
||||
(2 * ((1 / Q.ξ) * x) * (physHermite n (x/Q.ξ)) -
|
||||
2 * n * (physHermite (n - 1) (x/Q.ξ)))
|
||||
+ (1 + (- 1 / Q.ξ^2) * x ^ 2) * (physHermite (n + 1) ( x/Q.ξ)))
|
||||
+ (1 + (- 1 / Q.ξ^2) * x ^ 2) * (physHermite (n + 1) (x/Q.ξ)))
|
||||
· ring_nf
|
||||
trans (- 1 / Q.ξ^2) * (2 * (n + 1) * (physHermite (n + 1) (x/Q.ξ))
|
||||
+ (1 + (- 1/ Q.ξ^2) * x ^ 2) * (physHermite (n + 1) (x/Q.ξ)))
|
||||
|
|
|
@ -335,9 +335,7 @@ lemma _root_.LorentzGroup.mem_iff_norm : Λ ∈ LorentzGroup d ↔
|
|||
apply e.injective
|
||||
have hp' := e.injective.eq_iff.mpr hp
|
||||
have hn' := e.injective.eq_iff.mpr hn
|
||||
simp [Action.instMonoidalCategory_tensorUnit_V, Action.instMonoidalCategory_tensorObj_V,
|
||||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, map_add, map_sub] at hp' hn'
|
||||
simp only [Action.instMonoidalCategory_tensorUnit_V, map_add, map_sub] at hp' hn'
|
||||
linear_combination (norm := ring_nf) (1 / 4) * hp' + (-1/ 4) * hn'
|
||||
rw [symm (Λ *ᵥ y) (Λ *ᵥ x), symm y x]
|
||||
simp only [Action.instMonoidalCategory_tensorUnit_V]
|
||||
|
|
|
@ -72,8 +72,7 @@ $$\begin{align}
|
|||
\begin{vmatrix}
|
||||
\operatorname{Re}(x\bar{y}) & -\operatorname{Im}(x\bar{y}) \\
|
||||
\operatorname{Im}(x\bar{y}) & \operatorname{Re}(x\bar{y})
|
||||
\end{vmatrix} \det\left(
|
||||
\begin{bmatrix} \lvert x\rvert^2 & □ \\ 0 & \lvert y\rvert^2 \end{bmatrix} -
|
||||
\end{vmatrix} \det\left(\begin{bmatrix} \lvert x\rvert^2 & □ \\ 0 & \lvert y\rvert^2 \end{bmatrix} -
|
||||
\begin{bmatrix} □ & □ \\ 0 & 0 \end{bmatrix}
|
||||
\begin{bmatrix} □ & □ \\ □ & □ \end{bmatrix}
|
||||
\begin{bmatrix} 0 & □ \\ 0 & □ \end{bmatrix}
|
||||
|
|
|
@ -190,8 +190,7 @@ def altRightRightUnit : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ altRightHanded ⊗ rightHa
|
|||
refine ModuleCat.hom_ext ?_
|
||||
refine LinearMap.ext fun x : ℂ => ?_
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
Action.tensorUnit_ρ
|
||||
, CategoryTheory.Category.id_comp, Action.tensor_ρ, ModuleCat.hom_comp,
|
||||
Action.tensorUnit_ρ, CategoryTheory.Category.id_comp, Action.tensor_ρ, ModuleCat.hom_comp,
|
||||
Function.comp_apply]
|
||||
change x • altRightRightUnitVal =
|
||||
(TensorProduct.map (altRightHanded.ρ M) (rightHanded.ρ M)) (x • altRightRightUnitVal)
|
||||
|
|
|
@ -31,9 +31,9 @@ def PhysLeanTextLinter : Type := Array String → Array (String × ℕ × ℕ)
|
|||
|
||||
/-- Checks if there are two consecutive empty lines. -/
|
||||
def doubleEmptyLineLinter : PhysLeanTextLinter := fun lines ↦ Id.run do
|
||||
let enumLines := (lines.toList.enumFrom 1)
|
||||
let enumLines := (lines.toList.zipIdx 1)
|
||||
let pairLines := List.zip enumLines (List.tail! enumLines)
|
||||
let errors := pairLines.filterMap (fun ((lno1, l1), _, l2) ↦
|
||||
let errors := pairLines.filterMap (fun ((l1, lno1), l2, _) ↦
|
||||
if l1.length == 0 && l2.length == 0 then
|
||||
some (s!" Double empty line. ", lno1, 1)
|
||||
else none)
|
||||
|
@ -41,8 +41,8 @@ def doubleEmptyLineLinter : PhysLeanTextLinter := fun lines ↦ Id.run do
|
|||
|
||||
/-- Checks if there is a double space in the line, which is not at the start. -/
|
||||
def doubleSpaceLinter : PhysLeanTextLinter := fun lines ↦ Id.run do
|
||||
let enumLines := (lines.toList.enumFrom 1)
|
||||
let errors := enumLines.filterMap (fun (lno, l) ↦
|
||||
let enumLines := (lines.toList.zipIdx 1)
|
||||
let errors := enumLines.filterMap (fun (l, lno) ↦
|
||||
if String.containsSubstr l.trimLeft " " then
|
||||
let k := (Substring.findAllSubstr l " ").toList.getLast?
|
||||
let col := match k with
|
||||
|
@ -53,8 +53,8 @@ def doubleSpaceLinter : PhysLeanTextLinter := fun lines ↦ Id.run do
|
|||
errors.toArray
|
||||
|
||||
def longLineLinter : PhysLeanTextLinter := fun lines ↦ Id.run do
|
||||
let enumLines := (lines.toList.enumFrom 1)
|
||||
let errors := enumLines.filterMap (fun (lno, l) ↦
|
||||
let enumLines := (lines.toList.zipIdx 1)
|
||||
let errors := enumLines.filterMap (fun (l, lno) ↦
|
||||
if l.length > 100 ∧ ¬ String.containsSubstr l "http" then
|
||||
some (s!" Line is too long.", lno, 100)
|
||||
else none)
|
||||
|
@ -62,8 +62,8 @@ def longLineLinter : PhysLeanTextLinter := fun lines ↦ Id.run do
|
|||
|
||||
/-- Substring linter. -/
|
||||
def substringLinter (s : String) : PhysLeanTextLinter := fun lines ↦ Id.run do
|
||||
let enumLines := (lines.toList.enumFrom 1)
|
||||
let errors := enumLines.filterMap (fun (lno, l) ↦
|
||||
let enumLines := (lines.toList.zipIdx 1)
|
||||
let errors := enumLines.filterMap (fun (l, lno) ↦
|
||||
if String.containsSubstr l s then
|
||||
let k := (Substring.findAllSubstr l s).toList.getLast?
|
||||
let col := match k with
|
||||
|
@ -74,8 +74,8 @@ def substringLinter (s : String) : PhysLeanTextLinter := fun lines ↦ Id.run do
|
|||
errors.toArray
|
||||
|
||||
def endLineLinter (s : String) : PhysLeanTextLinter := fun lines ↦ Id.run do
|
||||
let enumLines := (lines.toList.enumFrom 1)
|
||||
let errors := enumLines.filterMap (fun (lno, l) ↦
|
||||
let enumLines := (lines.toList.zipIdx 1)
|
||||
let errors := enumLines.filterMap (fun (l, lno) ↦
|
||||
if l.endsWith s then
|
||||
some (s!" Line ends with `{s}`.", lno, l.length)
|
||||
else none)
|
||||
|
@ -83,8 +83,8 @@ def endLineLinter (s : String) : PhysLeanTextLinter := fun lines ↦ Id.run do
|
|||
|
||||
/-- Number of space at new line must be even. -/
|
||||
def numInitialSpacesEven : PhysLeanTextLinter := fun lines ↦ Id.run do
|
||||
let enumLines := (lines.toList.enumFrom 1)
|
||||
let errors := enumLines.filterMap (fun (lno, l) ↦
|
||||
let enumLines := (lines.toList.zipIdx 1)
|
||||
let errors := enumLines.filterMap (fun (l, lno) ↦
|
||||
let numSpaces := (l.takeWhile (· == ' ')).length
|
||||
if numSpaces % 2 != 0 then
|
||||
some (s!"Number of initial spaces is not even.", lno, 1)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue