refactor: improve remarks
This commit is contained in:
parent
c7bd59c981
commit
7738be4443
4 changed files with 27 additions and 15 deletions
|
@ -28,13 +28,14 @@ These states carry the same field statistic as the field they are derived from.
|
|||
remark fieldSpecification_intro := "The raw ingredients of a field theory are:
|
||||
- The specification of the fields.
|
||||
- Whether each field is a boson or a fermion.
|
||||
- Vertices present.
|
||||
- Coefficents of each vertex.
|
||||
- Vertices present in the Lagrangian.
|
||||
- The coefficent of each vertex.
|
||||
|
||||
We call the first two of these ingredients the `FieldSpecification` of the theory. "
|
||||
|
||||
/-- A field specification is a type of fields plus a specification of the
|
||||
statistics (fermionic or bosonic) of each field. -/
|
||||
/-- A field specification is a type, `Fields`, elements of which are fields
|
||||
present in a theory, and a map `statistics` from `Fields` to `FieldStatistic` which
|
||||
identifies each field as a boson or a fermion. -/
|
||||
structure FieldSpecification where
|
||||
/-- The type of fields. This also includes anti-states. -/
|
||||
Fields : Type
|
||||
|
@ -44,16 +45,16 @@ structure FieldSpecification where
|
|||
namespace FieldSpecification
|
||||
variable (𝓕 : FieldSpecification)
|
||||
|
||||
/-- Incoming asymptotic states are specified by a field and a momentum. -/
|
||||
/-- An incoming asymptotic state is a field and a momentum. -/
|
||||
def IncomingAsymptotic : Type := 𝓕.Fields × Lorentz.Contr 4
|
||||
|
||||
/-- Outgoing asymptotic states are specified by a field and a momentum. -/
|
||||
/-- An outgoing asymptotic states is a field and a momentum. -/
|
||||
def OutgoingAsymptotic : Type := 𝓕.Fields × Lorentz.Contr 4
|
||||
|
||||
/-- States specified by a field and a space-time position. -/
|
||||
/-- A position state is a field and a space-time position. -/
|
||||
def PositionStates : Type := 𝓕.Fields × SpaceTime
|
||||
|
||||
/-- The combination of asymptotic states and position states. -/
|
||||
/-- The type States is the inductive type combining the asymptotic states and position states. -/
|
||||
inductive States (𝓕 : FieldSpecification) where
|
||||
| inAsymp : 𝓕.IncomingAsymptotic → 𝓕.States
|
||||
| position : 𝓕.PositionStates → 𝓕.States
|
||||
|
|
|
@ -43,6 +43,14 @@ lemma timeContract_insertAndContract_none (𝓞 : 𝓕.ProtoOperatorAlgebra)
|
|||
ext a
|
||||
simp
|
||||
|
||||
/-- For `φsΛ` a Wick contraction for `φs = φ₀…φₙ`, the time contraction
|
||||
`(φsΛ ↩Λ φ i (some j)).timeContract 𝓞` is equal to the multiple of
|
||||
- the time contraction of `φ` with `φⱼ` if `i < i.succAbove j` else
|
||||
`φⱼ` with `φ`.
|
||||
- `φsΛ.timeContract 𝓞`.
|
||||
This follows from the fact that `(φsΛ ↩Λ φ i (some j))` has one more contracted pair than `φsΛ`,
|
||||
corresponding to `φ` contracted with `φⱼ`. The order depends on whether we insert `φ` before
|
||||
or after `φⱼ`. -/
|
||||
lemma timeConract_insertAndContract_some (𝓞 : 𝓕.ProtoOperatorAlgebra)
|
||||
(φ : 𝓕.States) (φs : List 𝓕.States)
|
||||
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted) :
|
||||
|
@ -69,8 +77,8 @@ lemma timeConract_insertAndContract_some_eq_mul_contractStateAtIndex_lt
|
|||
(ht : 𝓕.timeOrderRel φ φs[k.1]) (hik : i < i.succAbove k) :
|
||||
(φsΛ ↩Λ φ i (some k)).timeContract 𝓞 =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (φsΛ.uncontracted.filter (fun x => x < k))⟩)
|
||||
• (𝓞.contractStateAtIndex φ [φsΛ]ᵘᶜ
|
||||
((uncontractedStatesEquiv φs φsΛ) (some k)) * φsΛ.timeContract 𝓞) := by
|
||||
• (𝓞.contractStateAtIndex φ [φsΛ]ᵘᶜ ((uncontractedStatesEquiv φs φsΛ) (some k)) *
|
||||
φsΛ.timeContract 𝓞) := by
|
||||
rw [timeConract_insertAndContract_some]
|
||||
simp only [Nat.succ_eq_add_one, Fin.getElem_fin, ite_mul, instCommGroup.eq_1,
|
||||
ProtoOperatorAlgebra.contractStateAtIndex, uncontractedStatesEquiv, Equiv.optionCongr_apply,
|
||||
|
@ -105,7 +113,7 @@ lemma timeConract_insertAndContract_some_eq_mul_contractStateAtIndex_not_lt
|
|||
(φsΛ ↩Λ φ i (some k)).timeContract 𝓞 =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (φsΛ.uncontracted.filter (fun x => x ≤ k))⟩)
|
||||
• (𝓞.contractStateAtIndex φ [φsΛ]ᵘᶜ
|
||||
((uncontractedStatesEquiv φs φsΛ) (some k)) * φsΛ.timeContract 𝓞) := by
|
||||
((uncontractedStatesEquiv φs φsΛ) (some k)) * φsΛ.timeContract 𝓞) := by
|
||||
rw [timeConract_insertAndContract_some]
|
||||
simp only [Nat.succ_eq_add_one, Fin.getElem_fin, ite_mul, instCommGroup.eq_1,
|
||||
ProtoOperatorAlgebra.contractStateAtIndex, uncontractedStatesEquiv, Equiv.optionCongr_apply,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue