refactor: Move Pauli & SL2C
This commit is contained in:
parent
236e99bd33
commit
78c0046c49
11 changed files with 14 additions and 14 deletions
199
HepLean/Lorentz/PauliMatrices/AsTensor.lean
Normal file
199
HepLean/Lorentz/PauliMatrices/AsTensor.lean
Normal file
|
@ -0,0 +1,199 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.OverColor.Basic
|
||||
import HepLean.Mathematics.PiTensorProduct
|
||||
import HepLean.Lorentz.ComplexVector.Basic
|
||||
import HepLean.Lorentz.Weyl.Two
|
||||
import HepLean.Lorentz.PauliMatrices.Basic
|
||||
/-!
|
||||
|
||||
## Pauli matrices
|
||||
|
||||
-/
|
||||
|
||||
namespace PauliMatrix
|
||||
|
||||
open Complex
|
||||
open Lorentz
|
||||
open Fermion
|
||||
open TensorProduct
|
||||
open CategoryTheory.MonoidalCategory
|
||||
|
||||
noncomputable section
|
||||
|
||||
open Matrix
|
||||
open MatrixGroups
|
||||
open Complex
|
||||
open TensorProduct
|
||||
open SpaceTime
|
||||
|
||||
/-- The tensor `σ^μ^a^{dot a}` based on the Pauli-matrices as an element of
|
||||
`complexContr ⊗ leftHanded ⊗ rightHanded`. -/
|
||||
def asTensor : (complexContr ⊗ leftHanded ⊗ rightHanded).V :=
|
||||
∑ i, complexContrBasis i ⊗ₜ leftRightToMatrix.symm (σSA i)
|
||||
|
||||
/-- The expansion of `asTensor` into complexContrBasis basis vectors . -/
|
||||
lemma asTensor_expand_complexContrBasis : asTensor =
|
||||
complexContrBasis (Sum.inl 0) ⊗ₜ leftRightToMatrix.symm (σSA (Sum.inl 0))
|
||||
+ complexContrBasis (Sum.inr 0) ⊗ₜ leftRightToMatrix.symm (σSA (Sum.inr 0))
|
||||
+ complexContrBasis (Sum.inr 1) ⊗ₜ leftRightToMatrix.symm (σSA (Sum.inr 1))
|
||||
+ complexContrBasis (Sum.inr 2) ⊗ₜ leftRightToMatrix.symm (σSA (Sum.inr 2)) := by
|
||||
rfl
|
||||
|
||||
/-- The expansion of the pauli matrix `σ₀` in terms of a basis of tensor product vectors. -/
|
||||
lemma leftRightToMatrix_σSA_inl_0_expand : leftRightToMatrix.symm (σSA (Sum.inl 0)) =
|
||||
leftBasis 0 ⊗ₜ rightBasis 0 + leftBasis 1 ⊗ₜ rightBasis 1 := by
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Fin.isValue]
|
||||
erw [leftRightToMatrix_symm_expand_tmul]
|
||||
simp only [σSA, Fin.isValue, Basis.coe_mk, σSA', σ0, of_apply, cons_val', empty_val',
|
||||
cons_val_fin_one, Fin.sum_univ_two, cons_val_zero, cons_val_one, head_cons, one_smul, zero_smul,
|
||||
add_zero, head_fin_const, zero_add, CategoryTheory.Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj]
|
||||
|
||||
/-- The expansion of the pauli matrix `σ₁` in terms of a basis of tensor product vectors. -/
|
||||
lemma leftRightToMatrix_σSA_inr_0_expand : leftRightToMatrix.symm (σSA (Sum.inr 0)) =
|
||||
leftBasis 0 ⊗ₜ rightBasis 1 + leftBasis 1 ⊗ₜ rightBasis 0:= by
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Fin.isValue]
|
||||
erw [leftRightToMatrix_symm_expand_tmul]
|
||||
simp only [σSA, Fin.isValue, Basis.coe_mk, σSA', σ1, of_apply, cons_val', empty_val',
|
||||
cons_val_fin_one, Fin.sum_univ_two, cons_val_zero, cons_val_one, head_cons, zero_smul, one_smul,
|
||||
zero_add, head_fin_const, add_zero, CategoryTheory.Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj]
|
||||
|
||||
/-- The expansion of the pauli matrix `σ₂` in terms of a basis of tensor product vectors. -/
|
||||
lemma leftRightToMatrix_σSA_inr_1_expand : leftRightToMatrix.symm (σSA (Sum.inr 1)) =
|
||||
-(I • leftBasis 0 ⊗ₜ[ℂ] rightBasis 1) + I • leftBasis 1 ⊗ₜ[ℂ] rightBasis 0 := by
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Fin.isValue]
|
||||
erw [leftRightToMatrix_symm_expand_tmul]
|
||||
simp only [σSA, Fin.isValue, Basis.coe_mk, σSA', σ2, of_apply, cons_val', empty_val',
|
||||
cons_val_fin_one, Fin.sum_univ_two, cons_val_zero, cons_val_one, head_cons, zero_smul, neg_smul,
|
||||
zero_add, head_fin_const, add_zero]
|
||||
|
||||
/-- The expansion of the pauli matrix `σ₃` in terms of a basis of tensor product vectors. -/
|
||||
lemma leftRightToMatrix_σSA_inr_2_expand : leftRightToMatrix.symm (σSA (Sum.inr 2)) =
|
||||
leftBasis 0 ⊗ₜ rightBasis 0 - leftBasis 1 ⊗ₜ rightBasis 1 := by
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Fin.isValue]
|
||||
erw [leftRightToMatrix_symm_expand_tmul]
|
||||
simp only [σSA, Fin.isValue, Basis.coe_mk, σSA', σ3, of_apply, cons_val', empty_val',
|
||||
cons_val_fin_one, Fin.sum_univ_two, cons_val_zero, cons_val_one, head_cons, one_smul, zero_smul,
|
||||
add_zero, head_fin_const, neg_smul, zero_add, CategoryTheory.Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj]
|
||||
rfl
|
||||
|
||||
/-- The expansion of `asTensor` into complexContrBasis basis of tensor product vectors. -/
|
||||
lemma asTensor_expand : asTensor =
|
||||
complexContrBasis (Sum.inl 0) ⊗ₜ (leftBasis 0 ⊗ₜ rightBasis 0)
|
||||
+ complexContrBasis (Sum.inl 0) ⊗ₜ (leftBasis 1 ⊗ₜ rightBasis 1)
|
||||
+ complexContrBasis (Sum.inr 0) ⊗ₜ (leftBasis 0 ⊗ₜ rightBasis 1)
|
||||
+ complexContrBasis (Sum.inr 0) ⊗ₜ (leftBasis 1 ⊗ₜ rightBasis 0)
|
||||
- I • complexContrBasis (Sum.inr 1) ⊗ₜ (leftBasis 0 ⊗ₜ rightBasis 1)
|
||||
+ I • complexContrBasis (Sum.inr 1) ⊗ₜ (leftBasis 1 ⊗ₜ rightBasis 0)
|
||||
+ complexContrBasis (Sum.inr 2) ⊗ₜ (leftBasis 0 ⊗ₜ rightBasis 0)
|
||||
- complexContrBasis (Sum.inr 2) ⊗ₜ (leftBasis 1 ⊗ₜ rightBasis 1) := by
|
||||
rw [asTensor_expand_complexContrBasis]
|
||||
rw [leftRightToMatrix_σSA_inl_0_expand, leftRightToMatrix_σSA_inr_0_expand,
|
||||
leftRightToMatrix_σSA_inr_1_expand, leftRightToMatrix_σSA_inr_2_expand]
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, CategoryTheory.Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
Fin.isValue, tmul_add, tmul_neg, tmul_smul, tmul_sub]
|
||||
rfl
|
||||
|
||||
/-- The tensor `σ^μ^a^{dot a}` based on the Pauli-matrices as a morphism,
|
||||
`𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexContr ⊗ leftHanded ⊗ rightHanded` manifesting
|
||||
the invariance under the `SL(2,ℂ)` action. -/
|
||||
def asConsTensor : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexContr ⊗ leftHanded ⊗ rightHanded where
|
||||
hom := {
|
||||
toFun := fun a =>
|
||||
let a' : ℂ := a
|
||||
a' • asTensor,
|
||||
map_add' := fun x y => by
|
||||
simp only [add_smul],
|
||||
map_smul' := fun m x => by
|
||||
simp only [smul_smul]
|
||||
rfl}
|
||||
comm M := by
|
||||
ext x : 2
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
Action.tensorUnit_ρ', CategoryTheory.Category.id_comp, Action.tensor_ρ', ModuleCat.coe_comp,
|
||||
Function.comp_apply]
|
||||
let x' : ℂ := x
|
||||
change x' • asTensor =
|
||||
(TensorProduct.map (complexContr.ρ M)
|
||||
(TensorProduct.map (leftHanded.ρ M) (rightHanded.ρ M))) (x' • asTensor)
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, _root_.map_smul]
|
||||
apply congrArg
|
||||
nth_rewrite 2 [asTensor]
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, CategoryTheory.Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
map_sum, map_tmul]
|
||||
symm
|
||||
calc _ = ∑ x, ((complexContr.ρ M) (complexContrBasis x) ⊗ₜ[ℂ]
|
||||
leftRightToMatrix.symm (SL2C.toLinearMapSelfAdjointMatrix M (σSA x))) := by
|
||||
refine Finset.sum_congr rfl (fun x _ => ?_)
|
||||
rw [← leftRightToMatrix_ρ_symm_selfAdjoint]
|
||||
rfl
|
||||
_ = ∑ x, ((∑ i, (SL2C.toLorentzGroup M).1 i x • (complexContrBasis i)) ⊗ₜ[ℂ]
|
||||
∑ j, leftRightToMatrix.symm ((SL2C.toLorentzGroup M⁻¹).1 x j • (σSA j))) := by
|
||||
refine Finset.sum_congr rfl (fun x _ => ?_)
|
||||
rw [SL2CRep_ρ_basis, SL2C.toLinearMapSelfAdjointMatrix_σSA]
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, SL2C.toLorentzGroup_apply_coe,
|
||||
Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
|
||||
Finset.sum_singleton, map_inv, lorentzGroupIsGroup_inv, AddSubgroup.coe_add,
|
||||
selfAdjoint.val_smul, AddSubgroup.val_finset_sum, map_add, map_sum]
|
||||
_ = ∑ x, ∑ i, ∑ j, ((SL2C.toLorentzGroup M).1 i x • (complexContrBasis i)) ⊗ₜ[ℂ]
|
||||
leftRightToMatrix.symm.toLinearMap ((SL2C.toLorentzGroup M⁻¹).1 x j • (σSA j)) := by
|
||||
refine Finset.sum_congr rfl (fun x _ => ?_)
|
||||
rw [sum_tmul]
|
||||
refine Finset.sum_congr rfl (fun i _ => ?_)
|
||||
rw [tmul_sum]
|
||||
rfl
|
||||
_ = ∑ x, ∑ i, ∑ j, ((SL2C.toLorentzGroup M).1 i x • (complexContrBasis i)) ⊗ₜ[ℂ]
|
||||
((SL2C.toLorentzGroup M⁻¹).1 x j • leftRightToMatrix.symm ((σSA j))) := by
|
||||
refine Finset.sum_congr rfl (fun x _ => (Finset.sum_congr rfl (fun i _ =>
|
||||
(Finset.sum_congr rfl (fun j _ => ?_)))))
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, SL2C.toLorentzGroup_apply_coe,
|
||||
map_inv, lorentzGroupIsGroup_inv, LinearMap.map_smul_of_tower, LinearEquiv.coe_coe,
|
||||
tmul_smul]
|
||||
_ = ∑ x, ∑ i, ∑ j, ((SL2C.toLorentzGroup M).1 i x * (SL2C.toLorentzGroup M⁻¹).1 x j)
|
||||
• ((complexContrBasis i)) ⊗ₜ[ℂ] leftRightToMatrix.symm ((σSA j)) := by
|
||||
refine Finset.sum_congr rfl (fun x _ => (Finset.sum_congr rfl (fun i _ =>
|
||||
(Finset.sum_congr rfl (fun j _ => ?_)))))
|
||||
rw [smul_tmul, smul_smul, tmul_smul]
|
||||
_ = ∑ i, ∑ x, ∑ j, ((SL2C.toLorentzGroup M).1 i x * (SL2C.toLorentzGroup M⁻¹).1 x j)
|
||||
• ((complexContrBasis i)) ⊗ₜ[ℂ] leftRightToMatrix.symm ((σSA j)) := Finset.sum_comm
|
||||
_ = ∑ i, ∑ j, ∑ x, ((SL2C.toLorentzGroup M).1 i x * (SL2C.toLorentzGroup M⁻¹).1 x j)
|
||||
• ((complexContrBasis i)) ⊗ₜ[ℂ] leftRightToMatrix.symm ((σSA j)) :=
|
||||
Finset.sum_congr rfl (fun x _ => Finset.sum_comm)
|
||||
_ = ∑ i, ∑ j, (∑ x, (SL2C.toLorentzGroup M).1 i x * (SL2C.toLorentzGroup M⁻¹).1 x j)
|
||||
• ((complexContrBasis i)) ⊗ₜ[ℂ] leftRightToMatrix.symm ((σSA j)) := by
|
||||
refine Finset.sum_congr rfl (fun i _ => (Finset.sum_congr rfl (fun j _ => ?_)))
|
||||
rw [Finset.sum_smul]
|
||||
_ = ∑ i, ∑ j, ((1 : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ) i j)
|
||||
• ((complexContrBasis i)) ⊗ₜ[ℂ] leftRightToMatrix.symm ((σSA j)) := by
|
||||
refine Finset.sum_congr rfl (fun i _ => (Finset.sum_congr rfl (fun j _ => ?_)))
|
||||
congr
|
||||
change ((SL2C.toLorentzGroup M) * (SL2C.toLorentzGroup M⁻¹)).1 i j = _
|
||||
rw [← SL2C.toLorentzGroup.map_mul]
|
||||
simp only [mul_inv_cancel, _root_.map_one, lorentzGroupIsGroup_one_coe]
|
||||
_ = ∑ i, ((1 : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ) i i)
|
||||
• ((complexContrBasis i)) ⊗ₜ[ℂ] leftRightToMatrix.symm ((σSA i)) := by
|
||||
refine Finset.sum_congr rfl (fun i _ => ?_)
|
||||
refine Finset.sum_eq_single i (fun b _ hb => ?_) (fun hb => ?_)
|
||||
· simp [one_apply_ne' hb]
|
||||
· simp only [Finset.mem_univ, not_true_eq_false] at hb
|
||||
_ = asTensor := by
|
||||
refine Finset.sum_congr rfl (fun i _ => ?_)
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, one_apply_eq, one_smul,
|
||||
CategoryTheory.Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj]
|
||||
|
||||
lemma asConsTensor_apply_one : asConsTensor.hom (1 : ℂ) = asTensor := by
|
||||
change asConsTensor.hom.toFun (1 : ℂ) = asTensor
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
asConsTensor, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul]
|
||||
|
||||
end
|
||||
end PauliMatrix
|
Loading…
Add table
Add a link
Reference in a new issue