feat: Add docs
This commit is contained in:
parent
278848247c
commit
7948160e53
3 changed files with 20 additions and 5 deletions
|
@ -48,7 +48,7 @@ scoped[StandardModel.HiggsField] notation "⟪" φ1 "," φ2 "⟫_H" => innerProd
|
|||
-/
|
||||
|
||||
@[simp]
|
||||
lemma innerProd_neg_left (φ1 φ2 : HiggsField) : ⟪- φ1, φ2⟫_H = -⟪φ1, φ2⟫_H := by
|
||||
lemma innerProd_neg_left (φ1 φ2 : HiggsField) : ⟪- φ1, φ2⟫_H = - ⟪φ1, φ2⟫_H := by
|
||||
funext x
|
||||
simp [innerProd]
|
||||
|
||||
|
|
|
@ -87,11 +87,14 @@ lemma complete_square (h : P.𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime) :
|
|||
field_simp
|
||||
ring
|
||||
|
||||
/-- The quadratic equation satisfied by the Higgs potential at a spacetime point `x`. -/
|
||||
lemma as_quad (φ : HiggsField) (x : SpaceTime) :
|
||||
P.𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x + (- P.μ2) * ‖φ‖_H ^ 2 x + (- P.toFun φ x) = 0 := by
|
||||
simp only [normSq, neg_mul, toFun, neg_add_rev, neg_neg]
|
||||
ring
|
||||
|
||||
/-- The Higgs potential is zero iff and only if the higgs field is zero, or the
|
||||
higgs field has norm-squared `P.μ2 / P.𝓵`, assuming `P.𝓁 = 0`. -/
|
||||
lemma toFun_eq_zero_iff (h : P.𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
P.toFun φ x = 0 ↔ φ x = 0 ∨ ‖φ‖_H ^ 2 x = P.μ2 / P.𝓵 := by
|
||||
refine Iff.intro (fun hV => ?_) (fun hD => ?_)
|
||||
|
@ -173,6 +176,8 @@ lemma pos_𝓵_quadDiscrim_zero_bound (h : 0 < P.𝓵) (φ : HiggsField) (x : Sp
|
|||
rw [neg_le, neg_div'] at h1
|
||||
exact h1
|
||||
|
||||
/-- If `P.𝓵` is negative, then if `P.μ2` is greater then zero, for all space-time points,
|
||||
the potential is negative `P.toFun φ x ≤ 0`. -/
|
||||
lemma neg_𝓵_toFun_neg (h : P.𝓵 < 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
(0 < P.μ2 ∧ P.toFun φ x ≤ 0) ∨ P.μ2 ≤ 0 := by
|
||||
by_cases hμ2 : P.μ2 ≤ 0
|
||||
|
@ -187,6 +192,8 @@ lemma neg_𝓵_toFun_neg (h : P.𝓵 < 0) (φ : HiggsField) (x : SpaceTime) :
|
|||
exact mul_nonpos_of_nonpos_of_nonneg (mul_nonpos_of_nonpos_of_nonneg (le_of_lt h)
|
||||
(sq_nonneg ‖φ x‖)) (sq_nonneg ‖φ x‖)
|
||||
|
||||
/-- If `P.𝓵` is bigger then zero, then if `P.μ2` is less then zero, for all space-time points,
|
||||
the potential is positive `0 ≤ P.toFun φ x`. -/
|
||||
lemma pos_𝓵_toFun_pos (h : 0 < P.𝓵) (φ : HiggsField) (x : SpaceTime) :
|
||||
(P.μ2 < 0 ∧ 0 ≤ P.toFun φ x) ∨ 0 ≤ P.μ2 := by
|
||||
simpa using P.neg.neg_𝓵_toFun_neg (by simpa using h) φ x
|
||||
|
@ -263,8 +270,8 @@ lemma pos_𝓵_sol_exists_iff (h𝓵 : 0 < P.𝓵) (c : ℝ) : (∃ φ x, P.toFu
|
|||
def IsBounded : Prop :=
|
||||
∃ c, ∀ Φ x, c ≤ P.toFun Φ x
|
||||
|
||||
lemma isBounded_𝓵_nonneg (h : P.IsBounded) :
|
||||
0 ≤ P.𝓵 := by
|
||||
/-- If the potential is bounded, then `P.𝓵` is non-negative. -/
|
||||
lemma isBounded_𝓵_nonneg (h : P.IsBounded) : 0 ≤ P.𝓵 := by
|
||||
by_contra hl
|
||||
rw [not_le] at hl
|
||||
obtain ⟨c, hc⟩ := h
|
||||
|
@ -308,6 +315,7 @@ lemma isBounded_𝓵_nonneg (h : P.IsBounded) :
|
|||
rw [hφ] at hc2
|
||||
linarith
|
||||
|
||||
/-- If `P.𝓵` is positive, then the potential is bounded. -/
|
||||
lemma isBounded_of_𝓵_pos (h : 0 < P.𝓵) : P.IsBounded := by
|
||||
simp only [IsBounded]
|
||||
have h2 := P.pos_𝓵_quadDiscrim_zero_bound h
|
||||
|
|
|
@ -42,8 +42,9 @@ namespace Hom
|
|||
|
||||
variable {C : Type} {f g h : OverColor C}
|
||||
|
||||
lemma ext (m n : f ⟶ g) (h : m.hom = n.hom) : m = n := by
|
||||
apply CategoryTheory.Iso.ext h
|
||||
/-- If `m` and `n` are morphisms in `OverColor C`, they are equal if their underlying
|
||||
morphisms in `Over C` are equal. -/
|
||||
lemma ext (m n : f ⟶ g) (h : m.hom = n.hom) : m = n := CategoryTheory.Iso.ext h
|
||||
|
||||
lemma ext_iff (m n : f ⟶ g) : (∀ x, m.hom.left x = n.hom.left x) ↔ m = n := by
|
||||
refine Iff.intro (fun h => ?_) (fun h => ?_)
|
||||
|
@ -62,10 +63,12 @@ def toEquiv (m : f ⟶ g) : f.left ≃ g.left where
|
|||
right_inv := by
|
||||
simpa only [Over.comp_left] using congrFun (congrArg (fun x => x.left) m.inv_hom_id)
|
||||
|
||||
/-- The equivalence of types underlying the identity morphism is the reflexive equivalence. -/
|
||||
@[simp]
|
||||
lemma toEquiv_id (f : OverColor C) : toEquiv (𝟙 f) = Equiv.refl f.left := by
|
||||
rfl
|
||||
|
||||
/-- The function `toEquiv` obeys compositions. -/
|
||||
@[simp]
|
||||
lemma toEquiv_comp (m : f ⟶ g) (n : g ⟶ h) : toEquiv (m ≫ n) = (toEquiv m).trans (toEquiv n) := by
|
||||
rfl
|
||||
|
@ -110,6 +113,7 @@ symmetric monoidal category.
|
|||
|
||||
-/
|
||||
|
||||
/-- The category `OverColor C` carries an instance of a Monoidal category structure. -/
|
||||
@[simps!]
|
||||
instance (C : Type) : MonoidalCategoryStruct (OverColor C) where
|
||||
tensorObj f g := Over.mk (Sum.elim f.hom g.hom)
|
||||
|
@ -172,6 +176,7 @@ instance (C : Type) : MonoidalCategoryStruct (OverColor C) where
|
|||
inv_hom_id := by
|
||||
rfl}
|
||||
|
||||
/-- The category `OverColor C` carries an instance of a Monoidal category. -/
|
||||
instance (C : Type) : MonoidalCategory (OverColor C) where
|
||||
tensorHom_def f g := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => rfl
|
||||
tensor_id X Y := CategoryTheory.Iso.ext <| (Iso.eq_inv_comp _).mp rfl
|
||||
|
@ -215,6 +220,7 @@ instance (C : Type) : MonoidalCategory (OverColor C) where
|
|||
| Sum.inl (Sum.inr x) => exact Empty.elim x
|
||||
| Sum.inr x => rfl
|
||||
|
||||
/-- The category `OverColor C` carries an instance of a braided category. -/
|
||||
instance (C : Type) : BraidedCategory (OverColor C) where
|
||||
braiding f g := {
|
||||
hom := Over.isoMk (Equiv.sumComm f.left g.left).toIso
|
||||
|
@ -250,6 +256,7 @@ instance (C : Type) : BraidedCategory (OverColor C) where
|
|||
| Sum.inr (Sum.inr x) => rfl
|
||||
| Sum.inl x => rfl
|
||||
|
||||
/-- The category `OverColor C` carries an instance of a symmetric monoidal category. -/
|
||||
instance (C : Type) : SymmetricCategory (OverColor C) where
|
||||
toBraidedCategory := instBraidedCategory C
|
||||
symmetry X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue