refactor: Lint

This commit is contained in:
jstoobysmith 2024-09-12 11:07:17 -04:00
parent 98084ae0aa
commit 79584d4853
2 changed files with 10 additions and 3 deletions

View file

@ -170,6 +170,7 @@ lemma isConst_iff_of_higgsVec (Φ : HiggsField) : Φ.IsConst ↔ ∃ (φ : Higgs
vector is the given real number. -/
def ofReal (a : ) : HiggsField := (HiggsVec.ofReal a).toField
/-- The higgs field which is all zero. -/
def zero : HiggsField := ofReal 0
end HiggsField

View file

@ -32,14 +32,18 @@ open SpaceTime
-/
/-- The parameters of the Higgs potential. -/
structure Potential where
/-- The mass-squared of the Higgs boson. -/
μ2 :
/-- The quartic coupling of the Higgs boson. Usually denoted λ.-/
𝓵 :
namespace Potential
variable (P : Potential)
/-- The function corresponding to the Higgs potential. -/
def toFun (φ : HiggsField) (x : SpaceTime) : :=
- P.μ2 * ‖φ‖_H ^ 2 x + P.𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x
@ -50,6 +54,7 @@ lemma toFun_smooth (φ : HiggsField) :
exact (smooth_const.smul φ.normSq_smooth).neg.add
((smooth_const.smul φ.normSq_smooth).smul φ.normSq_smooth)
/-- The Higgs potential formed by negating the mass squared and the quartic coupling. -/
def neg : Potential where
μ2 := - P.μ2
𝓵 := - P.𝓵
@ -113,6 +118,7 @@ lemma toFun_eq_zero_iff (h : P.𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime) :
-/
/-- The discrimiant of the quadratic equation formed by the Higgs potential. -/
def quadDiscrim (φ : HiggsField) (x : SpaceTime) : := discrim P.𝓵 (- P.μ2) (- P.toFun φ x)
/-- The discriminant of the quadratic formed by the potential is non-negative. -/
@ -333,7 +339,7 @@ lemma isMinOn_iff_of_μSq_nonpos_𝓵_pos (h𝓵 : 0 < P.𝓵) (hμ2 : P.μ2 ≤
have h1 := P.pos_𝓵_sol_exists_iff h𝓵
simp [hμ2] at h1
rw [isMinOn_univ_iff]
simp
simp only [Prod.forall]
refine Iff.intro (fun h => ?_) (fun h => ?_)
· have h1' : P.toFun φ x ≤ 0 := by
simpa using h HiggsField.zero 0
@ -366,7 +372,7 @@ lemma isMinOn_iff_of_μSq_nonneg_𝓵_pos (h𝓵 : 0 < P.𝓵) (hμ2 : 0 ≤ P.
have h1 := P.pos_𝓵_sol_exists_iff h𝓵
simp [hμ2, not_lt.mpr hμ2] at h1
rw [isMinOn_univ_iff]
simp
simp only [Prod.forall]
refine Iff.intro (fun h => ?_) (fun h => ?_)
· obtain ⟨φ', x', hφ'⟩ := (h1 (- P.μ2 ^ 2 / (4 * P.𝓵))).mpr (by rfl)
have h' := h φ' x'
@ -393,7 +399,7 @@ theorem isMinOn_iff_field_of_𝓵_pos (h𝓵 : 0 < P.𝓵) (φ : HiggsField) (x
lemma isMaxOn_iff_isMinOn_neg (φ : HiggsField) (x : SpaceTime) :
IsMaxOn (fun (φ, x) => P.toFun φ x) Set.univ (φ, x) ↔
IsMinOn (fun (φ, x) => P.neg.toFun φ x) Set.univ (φ, x) := by
simp
simp only [toFun_neg]
rw [isMaxOn_univ_iff, isMinOn_univ_iff]
simp_all only [Prod.forall, neg_le_neg_iff]