refactor: Lint
This commit is contained in:
parent
98084ae0aa
commit
79584d4853
2 changed files with 10 additions and 3 deletions
|
@ -170,6 +170,7 @@ lemma isConst_iff_of_higgsVec (Φ : HiggsField) : Φ.IsConst ↔ ∃ (φ : Higgs
|
|||
vector is the given real number. -/
|
||||
def ofReal (a : ℝ) : HiggsField := (HiggsVec.ofReal a).toField
|
||||
|
||||
/-- The higgs field which is all zero. -/
|
||||
def zero : HiggsField := ofReal 0
|
||||
|
||||
end HiggsField
|
||||
|
|
|
@ -32,14 +32,18 @@ open SpaceTime
|
|||
|
||||
-/
|
||||
|
||||
/-- The parameters of the Higgs potential. -/
|
||||
structure Potential where
|
||||
/-- The mass-squared of the Higgs boson. -/
|
||||
μ2 : ℝ
|
||||
/-- The quartic coupling of the Higgs boson. Usually denoted λ.-/
|
||||
𝓵 : ℝ
|
||||
|
||||
namespace Potential
|
||||
|
||||
variable (P : Potential)
|
||||
|
||||
/-- The function corresponding to the Higgs potential. -/
|
||||
def toFun (φ : HiggsField) (x : SpaceTime) : ℝ :=
|
||||
- P.μ2 * ‖φ‖_H ^ 2 x + P.𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x
|
||||
|
||||
|
@ -50,6 +54,7 @@ lemma toFun_smooth (φ : HiggsField) :
|
|||
exact (smooth_const.smul φ.normSq_smooth).neg.add
|
||||
((smooth_const.smul φ.normSq_smooth).smul φ.normSq_smooth)
|
||||
|
||||
/-- The Higgs potential formed by negating the mass squared and the quartic coupling. -/
|
||||
def neg : Potential where
|
||||
μ2 := - P.μ2
|
||||
𝓵 := - P.𝓵
|
||||
|
@ -113,6 +118,7 @@ lemma toFun_eq_zero_iff (h : P.𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime) :
|
|||
|
||||
-/
|
||||
|
||||
/-- The discrimiant of the quadratic equation formed by the Higgs potential. -/
|
||||
def quadDiscrim (φ : HiggsField) (x : SpaceTime) : ℝ := discrim P.𝓵 (- P.μ2) (- P.toFun φ x)
|
||||
|
||||
/-- The discriminant of the quadratic formed by the potential is non-negative. -/
|
||||
|
@ -333,7 +339,7 @@ lemma isMinOn_iff_of_μSq_nonpos_𝓵_pos (h𝓵 : 0 < P.𝓵) (hμ2 : P.μ2 ≤
|
|||
have h1 := P.pos_𝓵_sol_exists_iff h𝓵
|
||||
simp [hμ2] at h1
|
||||
rw [isMinOn_univ_iff]
|
||||
simp
|
||||
simp only [Prod.forall]
|
||||
refine Iff.intro (fun h => ?_) (fun h => ?_)
|
||||
· have h1' : P.toFun φ x ≤ 0 := by
|
||||
simpa using h HiggsField.zero 0
|
||||
|
@ -366,7 +372,7 @@ lemma isMinOn_iff_of_μSq_nonneg_𝓵_pos (h𝓵 : 0 < P.𝓵) (hμ2 : 0 ≤ P.
|
|||
have h1 := P.pos_𝓵_sol_exists_iff h𝓵
|
||||
simp [hμ2, not_lt.mpr hμ2] at h1
|
||||
rw [isMinOn_univ_iff]
|
||||
simp
|
||||
simp only [Prod.forall]
|
||||
refine Iff.intro (fun h => ?_) (fun h => ?_)
|
||||
· obtain ⟨φ', x', hφ'⟩ := (h1 (- P.μ2 ^ 2 / (4 * P.𝓵))).mpr (by rfl)
|
||||
have h' := h φ' x'
|
||||
|
@ -393,7 +399,7 @@ theorem isMinOn_iff_field_of_𝓵_pos (h𝓵 : 0 < P.𝓵) (φ : HiggsField) (x
|
|||
lemma isMaxOn_iff_isMinOn_neg (φ : HiggsField) (x : SpaceTime) :
|
||||
IsMaxOn (fun (φ, x) => P.toFun φ x) Set.univ (φ, x) ↔
|
||||
IsMinOn (fun (φ, x) => P.neg.toFun φ x) Set.univ (φ, x) := by
|
||||
simp
|
||||
simp only [toFun_neg]
|
||||
rw [isMaxOn_univ_iff, isMinOn_univ_iff]
|
||||
simp_all only [Prod.forall, neg_le_neg_iff]
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue