Update Permutations.lean
This commit is contained in:
parent
8bc8553d88
commit
7acaabe28d
1 changed files with 7 additions and 15 deletions
|
@ -10,7 +10,6 @@ import Mathlib.RepresentationTheory.Basic
|
|||
# Permutations of SM charges with RHN.
|
||||
|
||||
We define the group of permutations for the SM charges with RHN.
|
||||
|
||||
-/
|
||||
|
||||
universe v u
|
||||
|
@ -54,8 +53,7 @@ def repCharges {n : ℕ} : Representation ℚ (PermGroup n) (SMνCharges n).Char
|
|||
repeat erw [toSMSpecies_toSpecies_inv]
|
||||
rfl
|
||||
map_one' := by
|
||||
apply LinearMap.ext
|
||||
intro S
|
||||
refine LinearMap.ext fun S => ?_
|
||||
rw [charges_eq_toSpecies_eq]
|
||||
intro i
|
||||
erw [toSMSpecies_toSpecies_inv]
|
||||
|
@ -75,32 +73,26 @@ lemma toSpecies_sum_invariant (m : ℕ) (f : PermGroup n) (S : (SMνCharges n).C
|
|||
|
||||
lemma accGrav_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) :
|
||||
accGrav (repCharges f S) = accGrav S :=
|
||||
accGrav_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
accGrav_ext (by simpa using toSpecies_sum_invariant 1 f S)
|
||||
|
||||
lemma accSU2_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) :
|
||||
accSU2 (repCharges f S) = accSU2 S :=
|
||||
accSU2_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
accSU2_ext (by simpa using toSpecies_sum_invariant 1 f S)
|
||||
|
||||
lemma accSU3_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) :
|
||||
accSU3 (repCharges f S) = accSU3 S :=
|
||||
accSU3_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
accSU3_ext (by simpa using toSpecies_sum_invariant 1 f S)
|
||||
|
||||
lemma accYY_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) :
|
||||
accYY (repCharges f S) = accYY S :=
|
||||
accYY_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
accYY_ext (by simpa using toSpecies_sum_invariant 1 f S)
|
||||
|
||||
lemma accQuad_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) :
|
||||
accQuad (repCharges f S) = accQuad S :=
|
||||
accQuad_ext
|
||||
(toSpecies_sum_invariant 2 f S)
|
||||
accQuad_ext (toSpecies_sum_invariant 2 f S)
|
||||
|
||||
lemma accCube_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) :
|
||||
accCube (repCharges f S) = accCube S :=
|
||||
accCube_ext
|
||||
(by simpa using toSpecies_sum_invariant 3 f S)
|
||||
accCube_ext (by simpa using toSpecies_sum_invariant 3 f S)
|
||||
|
||||
end SMRHN
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue