Update NormalOrder.lean

This commit is contained in:
Pietro Monticone 2025-01-23 01:44:02 +01:00
parent bd35e5522d
commit 7bbe035616

View file

@ -38,20 +38,16 @@ def normalOrder : CrAnAlgebra 𝓕 →ₗ[] CrAnAlgebra 𝓕 :=
lemma normalOrder_ofCrAnList (φs : List 𝓕.CrAnStates) :
normalOrder (ofCrAnList φs) = normalOrderSign φs • ofCrAnList (normalOrderList φs) := by
rw [← ofListBasis_eq_ofList]
simp only [normalOrder, Basis.constr_basis]
rw [← ofListBasis_eq_ofList, normalOrder, Basis.constr_basis]
lemma ofCrAnList_eq_normalOrder (φs : List 𝓕.CrAnStates) :
ofCrAnList (normalOrderList φs) = normalOrderSign φs • normalOrder (ofCrAnList φs) := by
rw [normalOrder_ofCrAnList, normalOrderList]
rw [smul_smul]
simp only [normalOrderSign]
rw [Wick.koszulSign_mul_self]
simp
rw [normalOrder_ofCrAnList, normalOrderList, smul_smul, normalOrderSign, Wick.koszulSign_mul_self,
one_smul]
lemma normalOrder_one : normalOrder (𝓕 := 𝓕) 1 = 1 := by
rw [← ofCrAnList_nil, normalOrder_ofCrAnList]
simp
rw [← ofCrAnList_nil, normalOrder_ofCrAnList, normalOrderSign_nil, normalOrderList_nil,
ofCrAnList_nil, one_smul]
/-!
@ -63,8 +59,7 @@ lemma normalOrder_ofCrAnList_cons_create (φ : 𝓕.CrAnStates)
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create) (φs : List 𝓕.CrAnStates) :
normalOrder (ofCrAnList (φ :: φs)) =
ofCrAnState φ * normalOrder (ofCrAnList φs) := by
rw [normalOrder_ofCrAnList]
rw [normalOrderSign_cons_create φ hφ, normalOrderList_cons_create φ hφ φs]
rw [normalOrder_ofCrAnList, normalOrderSign_cons_create φ hφ, normalOrderList_cons_create φ hφ φs]
rw [ofCrAnList_cons, normalOrder_ofCrAnList, mul_smul_comm]
lemma normalOrder_create_mul (φ : 𝓕.CrAnStates)
@ -73,21 +68,18 @@ lemma normalOrder_create_mul (φ : 𝓕.CrAnStates)
normalOrder (ofCrAnState φ * a) = ofCrAnState φ * normalOrder a := by
change (normalOrder ∘ₗ mulLinearMap (ofCrAnState φ)) a =
(mulLinearMap (ofCrAnState φ) ∘ₗ normalOrder) a
refine LinearMap.congr_fun ?h a
apply ofCrAnListBasis.ext
intro l
refine LinearMap.congr_fun (ofCrAnListBasis.ext fun l ↦ ?_) a
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, ofListBasis_eq_ofList,
LinearMap.coe_comp, Function.comp_apply]
rw [← ofCrAnList_cons]
rw [normalOrder_ofCrAnList_cons_create φ hφ]
rw [← ofCrAnList_cons, normalOrder_ofCrAnList_cons_create φ hφ]
lemma normalOrder_ofCrAnList_append_annihilate (φ : 𝓕.CrAnStates)
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.annihilate) (φs : List 𝓕.CrAnStates) :
normalOrder (ofCrAnList (φs ++ [φ])) =
normalOrder (ofCrAnList φs) * ofCrAnState φ := by
rw [normalOrder_ofCrAnList]
rw [normalOrderSign_append_annihlate φ hφ φs, normalOrderList_append_annihilate φ hφ φs]
rw [ofCrAnList_append, ofCrAnList_singleton, normalOrder_ofCrAnList, smul_mul_assoc]
rw [normalOrder_ofCrAnList, normalOrderSign_append_annihlate φ hφ φs,
normalOrderList_append_annihilate φ hφ φs, ofCrAnList_append, ofCrAnList_singleton,
normalOrder_ofCrAnList, smul_mul_assoc]
lemma normalOrder_mul_annihilate (φ : 𝓕.CrAnStates)
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.annihilate)
@ -95,46 +87,35 @@ lemma normalOrder_mul_annihilate (φ : 𝓕.CrAnStates)
normalOrder (a * ofCrAnState φ) = normalOrder a * ofCrAnState φ := by
change (normalOrder ∘ₗ mulLinearMap.flip (ofCrAnState φ)) a =
(mulLinearMap.flip (ofCrAnState φ) ∘ₗ normalOrder) a
refine LinearMap.congr_fun ?h a
apply ofCrAnListBasis.ext
intro l
refine LinearMap.congr_fun (ofCrAnListBasis.ext fun l ↦ ?_) a
simp only [mulLinearMap, ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
LinearMap.flip_apply, LinearMap.coe_mk, AddHom.coe_mk]
rw [← ofCrAnList_singleton, ← ofCrAnList_append, ofCrAnList_singleton]
rw [normalOrder_ofCrAnList_append_annihilate φ hφ]
rw [← ofCrAnList_singleton, ← ofCrAnList_append, ofCrAnList_singleton,
normalOrder_ofCrAnList_append_annihilate φ hφ]
lemma normalOrder_crPart_mul (φ : 𝓕.States) (a : CrAnAlgebra 𝓕) :
normalOrder (crPart (StateAlgebra.ofState φ) * a) =
crPart (StateAlgebra.ofState φ) * normalOrder a := by
match φ with
| .negAsymp φ =>
dsimp only [crPart, StateAlgebra.ofState]
simp only [FreeAlgebra.lift_ι_apply]
rw [crPart, StateAlgebra.ofState, FreeAlgebra.lift_ι_apply]
exact normalOrder_create_mul ⟨States.negAsymp φ, ()⟩ rfl a
| .position φ =>
dsimp only [crPart, StateAlgebra.ofState]
simp only [FreeAlgebra.lift_ι_apply]
refine normalOrder_create_mul _ ?_ _
simp [crAnStatesToCreateAnnihilate]
| .posAsymp φ =>
simp
rw [crPart, StateAlgebra.ofState, FreeAlgebra.lift_ι_apply]
exact normalOrder_create_mul _ rfl _
| .posAsymp φ => simp
lemma normalOrder_mul_anPart (φ : 𝓕.States) (a : CrAnAlgebra 𝓕) :
normalOrder (a * anPart (StateAlgebra.ofState φ)) =
normalOrder a * anPart (StateAlgebra.ofState φ) := by
match φ with
| .negAsymp φ =>
simp
| .negAsymp φ => simp
| .position φ =>
dsimp only [anPart, StateAlgebra.ofState]
simp only [FreeAlgebra.lift_ι_apply]
refine normalOrder_mul_annihilate _ ?_ _
simp [crAnStatesToCreateAnnihilate]
rw [anPart, StateAlgebra.ofState, FreeAlgebra.lift_ι_apply]
exact normalOrder_mul_annihilate _ rfl _
| .posAsymp φ =>
dsimp only [anPart, StateAlgebra.ofState]
simp only [FreeAlgebra.lift_ι_apply]
refine normalOrder_mul_annihilate _ ?_ _
simp [crAnStatesToCreateAnnihilate]
rw [anPart, StateAlgebra.ofState, FreeAlgebra.lift_ι_apply]
refine normalOrder_mul_annihilate _ rfl _
/-!
@ -151,9 +132,7 @@ lemma normalOrder_swap_create_annihlate_ofCrAnList_ofCrAnList (φc φa : 𝓕.Cr
normalOrder (ofCrAnList φs' * ofCrAnState φa * ofCrAnState φc * ofCrAnList φs) := by
rw [mul_assoc, mul_assoc, ← ofCrAnList_cons, ← ofCrAnList_cons, ← ofCrAnList_append]
rw [normalOrder_ofCrAnList, normalOrderSign_swap_create_annihlate φc φa hφc hφa]
rw [normalOrderList_swap_create_annihlate φc φa hφc hφa]
rw [← smul_smul, ← normalOrder_ofCrAnList]
congr
rw [normalOrderList_swap_create_annihlate φc φa hφc hφa, ← smul_smul, ← normalOrder_ofCrAnList]
rw [ofCrAnList_append, ofCrAnList_cons, ofCrAnList_cons]
noncomm_ring
@ -166,9 +145,7 @@ lemma normalOrder_swap_create_annihlate_ofCrAnList (φc φa : 𝓕.CrAnStates)
change (normalOrder ∘ₗ mulLinearMap (ofCrAnList φs * ofCrAnState φc * ofCrAnState φa)) a =
(smulLinearMap _ ∘ₗ normalOrder ∘ₗ
mulLinearMap (ofCrAnList φs * ofCrAnState φa * ofCrAnState φc)) a
refine LinearMap.congr_fun ?h a
apply ofCrAnListBasis.ext
intro l
refine LinearMap.congr_fun (ofCrAnListBasis.ext fun l ↦ ?_) a
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, ofListBasis_eq_ofList,
LinearMap.coe_comp, Function.comp_apply, instCommGroup.eq_1]
rw [normalOrder_swap_create_annihlate_ofCrAnList_ofCrAnList φc φa hφc hφa]
@ -184,26 +161,20 @@ lemma normalOrder_swap_create_annihlate (φc φa : 𝓕.CrAnStates)
change (normalOrder ∘ₗ mulLinearMap.flip (ofCrAnState φc * (ofCrAnState φa * b))) a =
(smulLinearMap (𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa)) ∘ₗ
normalOrder ∘ₗ mulLinearMap.flip (ofCrAnState φa * (ofCrAnState φc * b))) a
apply LinearMap.congr_fun
apply ofCrAnListBasis.ext
intro l
refine LinearMap.congr_fun (ofCrAnListBasis.ext fun l ↦ ?_) _
simp only [mulLinearMap, ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
LinearMap.flip_apply, LinearMap.coe_mk, AddHom.coe_mk, instCommGroup.eq_1]
repeat rw [← mul_assoc]
rw [normalOrder_swap_create_annihlate_ofCrAnList φc φa hφc hφa]
LinearMap.flip_apply, LinearMap.coe_mk, AddHom.coe_mk, instCommGroup.eq_1, ← mul_assoc,
normalOrder_swap_create_annihlate_ofCrAnList φc φa hφc hφa]
rfl
lemma normalOrder_superCommute_create_annihilate (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(a b : 𝓕.CrAnAlgebra) :
normalOrder (a * superCommute (ofCrAnState φc) (ofCrAnState φa) * b) = 0 := by
rw [superCommute_ofCrAnState_ofCrAnState]
simp only [instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [mul_sub, sub_mul, map_sub, ← smul_mul_assoc]
rw [← mul_assoc, ← mul_assoc]
rw [normalOrder_swap_create_annihlate φc φa hφc hφa]
simp only [FieldStatistic.instCommGroup.eq_1, Algebra.mul_smul_comm, Algebra.smul_mul_assoc,
map_smul, sub_self]
simp only [superCommute_ofCrAnState_ofCrAnState, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [mul_sub, sub_mul, map_sub, ← smul_mul_assoc, ← mul_assoc, ← mul_assoc,
normalOrder_swap_create_annihlate φc φa hφc hφa]
simp
lemma normalOrder_superCommute_annihilate_create (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
@ -212,8 +183,7 @@ lemma normalOrder_superCommute_annihilate_create (φc φa : 𝓕.CrAnStates)
rw [superCommute_ofCrAnState_ofCrAnState_symm]
simp only [instCommGroup.eq_1, neg_smul, mul_neg, Algebra.mul_smul_comm, neg_mul,
Algebra.smul_mul_assoc, map_neg, map_smul, neg_eq_zero, smul_eq_zero]
apply Or.inr
exact normalOrder_superCommute_create_annihilate φc φa hφc hφa a b
exact Or.inr (normalOrder_superCommute_create_annihilate φc φa hφc hφa ..)
lemma normalOrder_swap_crPart_anPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
normalOrder (a * (crPart (StateAlgebra.ofState φ)) * (anPart (StateAlgebra.ofState φ')) * b) =
@ -221,34 +191,28 @@ lemma normalOrder_swap_crPart_anPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra
normalOrder (a * (anPart (StateAlgebra.ofState φ')) *
(crPart (StateAlgebra.ofState φ)) * b) := by
match φ, φ' with
| _, .negAsymp φ' =>
simp
| .posAsymp φ, _ =>
simp
| _, .negAsymp φ' => simp
| .posAsymp φ, _ => simp
| .position φ, .position φ' =>
simp only [crPart_position, anPart_position, instCommGroup.eq_1]
rw [normalOrder_swap_create_annihlate]
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
rfl
rfl
rfl; rfl
| .negAsymp φ, .posAsymp φ' =>
simp only [crPart_negAsymp, anPart_posAsymp, instCommGroup.eq_1]
rw [normalOrder_swap_create_annihlate]
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
rfl
rfl
rfl; rfl
| .negAsymp φ, .position φ' =>
simp only [crPart_negAsymp, anPart_position, instCommGroup.eq_1]
rw [normalOrder_swap_create_annihlate]
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
rfl
rfl
rfl; rfl
| .position φ, .posAsymp φ' =>
simp only [crPart_position, anPart_posAsymp, instCommGroup.eq_1]
rw [normalOrder_swap_create_annihlate]
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
rfl
rfl
rfl; rfl
/-!
@ -262,51 +226,45 @@ lemma normalOrder_swap_anPart_crPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra
normalOrder (a * (anPart (StateAlgebra.ofState φ)) * (crPart (StateAlgebra.ofState φ')) * b) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • normalOrder (a * (crPart (StateAlgebra.ofState φ')) *
(anPart (StateAlgebra.ofState φ)) * b) := by
rw [normalOrder_swap_crPart_anPart]
rw [smul_smul, FieldStatistic.exchangeSign_symm, FieldStatistic.exchangeSign_mul_self]
simp
simp [normalOrder_swap_crPart_anPart, smul_smul]
lemma normalOrder_superCommute_crPart_anPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
normalOrder (a * superCommute
(crPart (StateAlgebra.ofState φ)) (anPart (StateAlgebra.ofState φ')) * b) = 0 := by
match φ, φ' with
| _, .negAsymp φ' =>
simp
| .posAsymp φ', _ =>
simp
| _, .negAsymp φ' => simp
| .posAsymp φ', _ => simp
| .position φ, .position φ' =>
simp only [crPart_position, anPart_position]
refine normalOrder_superCommute_create_annihilate _ _ (by rfl) (by rfl) _ _
rw [crPart_position, anPart_position]
exact normalOrder_superCommute_create_annihilate _ _ rfl rfl ..
| .negAsymp φ, .posAsymp φ' =>
simp only [crPart_negAsymp, anPart_posAsymp]
refine normalOrder_superCommute_create_annihilate _ _ (by rfl) (by rfl) _ _
rw [crPart_negAsymp, anPart_posAsymp]
exact normalOrder_superCommute_create_annihilate _ _ rfl rfl ..
| .negAsymp φ, .position φ' =>
simp only [crPart_negAsymp, anPart_position]
refine normalOrder_superCommute_create_annihilate _ _ (by rfl) (by rfl) _ _
rw [crPart_negAsymp, anPart_position]
exact normalOrder_superCommute_create_annihilate _ _ rfl rfl ..
| .position φ, .posAsymp φ' =>
simp only [crPart_position, anPart_posAsymp]
refine normalOrder_superCommute_create_annihilate _ _ (by rfl) (by rfl) _ _
rw [crPart_position, anPart_posAsymp]
exact normalOrder_superCommute_create_annihilate _ _ rfl rfl ..
lemma normalOrder_superCommute_anPart_crPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
normalOrder (a * superCommute
(anPart (StateAlgebra.ofState φ)) (crPart (StateAlgebra.ofState φ')) * b) = 0 := by
match φ, φ' with
| .negAsymp φ', _ =>
simp
| _, .posAsymp φ' =>
simp
| .negAsymp φ', _ => simp
| _, .posAsymp φ' => simp
| .position φ, .position φ' =>
simp only [anPart_position, crPart_position]
refine normalOrder_superCommute_annihilate_create _ _ (by rfl) (by rfl) _ _
rw [anPart_position, crPart_position]
exact normalOrder_superCommute_annihilate_create _ _ rfl rfl ..
| .posAsymp φ', .negAsymp φ =>
simp only [anPart_posAsymp, crPart_negAsymp]
refine normalOrder_superCommute_annihilate_create _ _ (by rfl) (by rfl) _ _
exact normalOrder_superCommute_annihilate_create _ _ rfl rfl ..
| .position φ', .negAsymp φ =>
simp only [anPart_position, crPart_negAsymp]
refine normalOrder_superCommute_annihilate_create _ _ (by rfl) (by rfl) _ _
exact normalOrder_superCommute_annihilate_create _ _ rfl rfl ..
| .posAsymp φ, .position φ' =>
simp only [anPart_posAsymp, crPart_position]
refine normalOrder_superCommute_annihilate_create _ _ (by rfl) (by rfl) _ _
exact normalOrder_superCommute_annihilate_create _ _ rfl rfl ..
/-!
@ -359,8 +317,7 @@ lemma normalOrder_ofState_mul_ofState (φ φ' : 𝓕.States) :
(crPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ)) +
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') +
anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
rw [ofState_eq_crPart_add_anPart, ofState_eq_crPart_add_anPart]
rw [mul_add, add_mul, add_mul]
rw [ofState_eq_crPart_add_anPart, ofState_eq_crPart_add_anPart, mul_add, add_mul, add_mul]
simp only [map_add, normalOrder_crPart_mul_crPart, normalOrder_anPart_mul_crPart,
instCommGroup.eq_1, normalOrder_crPart_mul_anPart, normalOrder_anPart_mul_anPart]
abel
@ -381,17 +338,14 @@ lemma normalOrder_superCommute_ofCrAnList_create_create_ofCrAnList
normalOrderSign (φs ++ φc' :: φc :: φs') •
(ofCrAnList (createFilter φs) * superCommute (ofCrAnState φc) (ofCrAnState φc') *
ofCrAnList (createFilter φs') * ofCrAnList (annihilateFilter (φs ++ φs'))) := by
rw [superCommute_ofCrAnState_ofCrAnState]
rw [mul_sub, sub_mul, map_sub]
rw [superCommute_ofCrAnState_ofCrAnState, mul_sub, sub_mul, map_sub]
conv_lhs =>
lhs
rhs
lhs; rhs
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_append, ← ofCrAnList_append,
← ofCrAnList_append]
conv_lhs =>
lhs
rw [normalOrder_ofCrAnList]
rw [normalOrderList_eq_createFilter_append_annihilateFilter]
rw [normalOrder_ofCrAnList, normalOrderList_eq_createFilter_append_annihilateFilter]
rw [createFilter_append, createFilter_append, createFilter_append,
createFilter_singleton_create _ hφc, createFilter_singleton_create _ hφc']
rw [annihilateFilter_append, annihilateFilter_append, annihilateFilter_append,
@ -401,10 +355,8 @@ lemma normalOrder_superCommute_ofCrAnList_create_create_ofCrAnList
instCommGroup.eq_1, Algebra.smul_mul_assoc, Algebra.mul_smul_comm, map_smul]
rw [← annihilateFilter_append]
conv_lhs =>
rhs
rhs
rw [smul_mul_assoc]
rw [Algebra.mul_smul_comm, smul_mul_assoc]
rhs; rhs
rw [smul_mul_assoc, Algebra.mul_smul_comm, smul_mul_assoc]
rhs
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_append, ← ofCrAnList_append,
← ofCrAnList_append]
@ -412,8 +364,7 @@ lemma normalOrder_superCommute_ofCrAnList_create_create_ofCrAnList
rhs
rw [map_smul]
rhs
rw [normalOrder_ofCrAnList]
rw [normalOrderList_eq_createFilter_append_annihilateFilter]
rw [normalOrder_ofCrAnList, normalOrderList_eq_createFilter_append_annihilateFilter]
rw [createFilter_append, createFilter_append, createFilter_append,
createFilter_singleton_create _ hφc, createFilter_singleton_create _ hφc']
rw [annihilateFilter_append, annihilateFilter_append, annihilateFilter_append,
@ -423,25 +374,19 @@ lemma normalOrder_superCommute_ofCrAnList_create_create_ofCrAnList
List.append_nil, Algebra.smul_mul_assoc]
rw [← annihilateFilter_append]
conv_lhs =>
lhs
lhs
lhs; lhs
simp
conv_lhs =>
rhs
rhs
lhs
rhs; rhs; lhs
simp
rw [normalOrderSign_swap_create_create φc φc' hφc hφc']
rw [smul_smul, mul_comm, ← smul_smul]
rw [← smul_sub, ofCrAnList_append, ofCrAnList_append, ofCrAnList_append]
conv_lhs =>
rhs
rhs
rhs; rhs
rw [ofCrAnList_append, ofCrAnList_append, ofCrAnList_append]
rw [← smul_mul_assoc, ← smul_mul_assoc, ← Algebra.mul_smul_comm]
rw [← sub_mul, ← sub_mul, ← mul_sub]
congr
rw [ofCrAnList_append, ofCrAnList_singleton, ofCrAnList_singleton]
rw [← sub_mul, ← sub_mul, ← mul_sub, ofCrAnList_append, ofCrAnList_singleton, ofCrAnList_singleton]
rw [ofCrAnList_append, ofCrAnList_singleton, ofCrAnList_singleton, smul_mul_assoc]
lemma normalOrder_superCommute_ofCrAnList_annihilate_annihilate_ofCrAnList
@ -455,17 +400,14 @@ lemma normalOrder_superCommute_ofCrAnList_annihilate_annihilate_ofCrAnList
(ofCrAnList (createFilter (φs ++ φs'))
* ofCrAnList (annihilateFilter φs) * superCommute (ofCrAnState φa) (ofCrAnState φa')
* ofCrAnList (annihilateFilter φs')) := by
rw [superCommute_ofCrAnState_ofCrAnState]
rw [mul_sub, sub_mul, map_sub]
rw [superCommute_ofCrAnState_ofCrAnState, mul_sub, sub_mul, map_sub]
conv_lhs =>
lhs
rhs
lhs; rhs
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_append, ← ofCrAnList_append,
← ofCrAnList_append]
conv_lhs =>
lhs
rw [normalOrder_ofCrAnList]
rw [normalOrderList_eq_createFilter_append_annihilateFilter]
rw [normalOrder_ofCrAnList, normalOrderList_eq_createFilter_append_annihilateFilter]
rw [createFilter_append, createFilter_append, createFilter_append,
createFilter_singleton_annihilate _ hφa, createFilter_singleton_annihilate _ hφa']
rw [annihilateFilter_append, annihilateFilter_append, annihilateFilter_append,
@ -475,8 +417,7 @@ lemma normalOrder_superCommute_ofCrAnList_annihilate_annihilate_ofCrAnList
instCommGroup.eq_1, Algebra.smul_mul_assoc, Algebra.mul_smul_comm, map_smul]
rw [← createFilter_append]
conv_lhs =>
rhs
rhs
rhs; rhs
rw [smul_mul_assoc]
rw [Algebra.mul_smul_comm, smul_mul_assoc]
rhs
@ -486,8 +427,7 @@ lemma normalOrder_superCommute_ofCrAnList_annihilate_annihilate_ofCrAnList
rhs
rw [map_smul]
rhs
rw [normalOrder_ofCrAnList]
rw [normalOrderList_eq_createFilter_append_annihilateFilter]
rw [normalOrder_ofCrAnList, normalOrderList_eq_createFilter_append_annihilateFilter]
rw [createFilter_append, createFilter_append, createFilter_append,
createFilter_singleton_annihilate _ hφa, createFilter_singleton_annihilate _ hφa']
rw [annihilateFilter_append, annihilateFilter_append, annihilateFilter_append,
@ -497,20 +437,16 @@ lemma normalOrder_superCommute_ofCrAnList_annihilate_annihilate_ofCrAnList
List.append_nil, Algebra.smul_mul_assoc]
rw [← createFilter_append]
conv_lhs =>
lhs
lhs
lhs; lhs
simp
conv_lhs =>
rhs
rhs
lhs
rhs; rhs; lhs
simp
rw [normalOrderSign_swap_annihilate_annihilate φa φa' hφa hφa']
rw [smul_smul, mul_comm, ← smul_smul]
rw [← smul_sub, ofCrAnList_append, ofCrAnList_append, ofCrAnList_append]
conv_lhs =>
rhs
rhs
rhs; rhs
rw [ofCrAnList_append, ofCrAnList_append, ofCrAnList_append]
rw [← Algebra.mul_smul_comm, ← smul_mul_assoc, ← Algebra.mul_smul_comm]
rw [← mul_sub, ← sub_mul, ← mul_sub]
@ -519,7 +455,6 @@ lemma normalOrder_superCommute_ofCrAnList_annihilate_annihilate_ofCrAnList
apply congrArg
rw [mul_assoc]
apply congrArg
congr
rw [ofCrAnList_append, ofCrAnList_singleton, ofCrAnList_singleton]
rw [ofCrAnList_append, ofCrAnList_singleton, ofCrAnList_singleton, smul_mul_assoc]
@ -558,16 +493,14 @@ lemma ofCrAnList_mul_normalOrder_ofStateList_eq_superCommute (φs : List 𝓕.Cr
ofCrAnList φs * normalOrder (ofStateList φs') =
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • normalOrder (ofStateList φs') * ofCrAnList φs
+ ⟨ofCrAnList φs, normalOrder (ofStateList φs')⟩ₛca := by
rw [ofCrAnList_superCommute_normalOrder_ofStateList]
simp
simp [ofCrAnList_superCommute_normalOrder_ofStateList]
lemma ofCrAnState_mul_normalOrder_ofStateList_eq_superCommute (φ : 𝓕.CrAnStates)
(φs' : List 𝓕.States) :
ofCrAnState φ * normalOrder (ofStateList φs') =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • normalOrder (ofStateList φs') * ofCrAnState φ
+ ⟨ofCrAnState φ, normalOrder (ofStateList φs')⟩ₛca := by
rw [← ofCrAnList_singleton, ofCrAnList_mul_normalOrder_ofStateList_eq_superCommute]
simp [ofCrAnList_singleton]
simp [← ofCrAnList_singleton, ofCrAnList_mul_normalOrder_ofStateList_eq_superCommute]
lemma anPart_mul_normalOrder_ofStateList_eq_superCommute (φ : 𝓕.States)
(φs' : List 𝓕.States) :
@ -576,16 +509,9 @@ lemma anPart_mul_normalOrder_ofStateList_eq_superCommute (φ : 𝓕.States)
+ ⟨anPart (StateAlgebra.ofState φ), normalOrder (ofStateList φs')⟩ₛca := by
rw [normalOrder_mul_anPart]
match φ with
| .negAsymp φ =>
simp
| .position φ =>
simp only [anPart_position, instCommGroup.eq_1]
rw [ofCrAnState_mul_normalOrder_ofStateList_eq_superCommute]
simp [crAnStatistics]
| .posAsymp φ =>
simp only [anPart_posAsymp, instCommGroup.eq_1]
rw [ofCrAnState_mul_normalOrder_ofStateList_eq_superCommute]
simp [crAnStatistics]
| .negAsymp φ => simp
| .position φ => simp [ofCrAnState_mul_normalOrder_ofStateList_eq_superCommute, crAnStatistics]
| .posAsymp φ => simp [ofCrAnState_mul_normalOrder_ofStateList_eq_superCommute, crAnStatistics]
end