refactor: supercommute notation
This commit is contained in:
parent
5a25cd0f5c
commit
7d053695dd
5 changed files with 113 additions and 127 deletions
|
@ -36,12 +36,14 @@ def normalOrder : CrAnAlgebra 𝓕 →ₗ[ℂ] CrAnAlgebra 𝓕 :=
|
|||
Basis.constr ofCrAnListBasis ℂ fun φs =>
|
||||
normalOrderSign φs • ofCrAnList (normalOrderList φs)
|
||||
|
||||
scoped[FieldSpecification.CrAnAlgebra] notation "𝓝(" a ")" => normalOrder a
|
||||
|
||||
lemma normalOrder_ofCrAnList (φs : List 𝓕.CrAnStates) :
|
||||
normalOrder (ofCrAnList φs) = normalOrderSign φs • ofCrAnList (normalOrderList φs) := by
|
||||
𝓝(ofCrAnList φs) = normalOrderSign φs • ofCrAnList (normalOrderList φs) := by
|
||||
rw [← ofListBasis_eq_ofList, normalOrder, Basis.constr_basis]
|
||||
|
||||
lemma ofCrAnList_eq_normalOrder (φs : List 𝓕.CrAnStates) :
|
||||
ofCrAnList (normalOrderList φs) = normalOrderSign φs • normalOrder (ofCrAnList φs) := by
|
||||
ofCrAnList (normalOrderList φs) = normalOrderSign φs • 𝓝(ofCrAnList φs) := by
|
||||
rw [normalOrder_ofCrAnList, normalOrderList, smul_smul, normalOrderSign, Wick.koszulSign_mul_self,
|
||||
one_smul]
|
||||
|
||||
|
@ -57,15 +59,13 @@ lemma normalOrder_one : normalOrder (𝓕 := 𝓕) 1 = 1 := by
|
|||
|
||||
lemma normalOrder_ofCrAnList_cons_create (φ : 𝓕.CrAnStates)
|
||||
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create) (φs : List 𝓕.CrAnStates) :
|
||||
normalOrder (ofCrAnList (φ :: φs)) =
|
||||
ofCrAnState φ * normalOrder (ofCrAnList φs) := by
|
||||
𝓝(ofCrAnList (φ :: φs)) = ofCrAnState φ * 𝓝(ofCrAnList φs) := by
|
||||
rw [normalOrder_ofCrAnList, normalOrderSign_cons_create φ hφ, normalOrderList_cons_create φ hφ φs]
|
||||
rw [ofCrAnList_cons, normalOrder_ofCrAnList, mul_smul_comm]
|
||||
|
||||
lemma normalOrder_create_mul (φ : 𝓕.CrAnStates)
|
||||
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create)
|
||||
(a : CrAnAlgebra 𝓕) :
|
||||
normalOrder (ofCrAnState φ * a) = ofCrAnState φ * normalOrder a := by
|
||||
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create) (a : CrAnAlgebra 𝓕) :
|
||||
𝓝(ofCrAnState φ * a) = ofCrAnState φ * 𝓝(a) := by
|
||||
change (normalOrder ∘ₗ mulLinearMap (ofCrAnState φ)) a =
|
||||
(mulLinearMap (ofCrAnState φ) ∘ₗ normalOrder) a
|
||||
refine LinearMap.congr_fun (ofCrAnListBasis.ext fun l ↦ ?_) a
|
||||
|
@ -75,16 +75,14 @@ lemma normalOrder_create_mul (φ : 𝓕.CrAnStates)
|
|||
|
||||
lemma normalOrder_ofCrAnList_append_annihilate (φ : 𝓕.CrAnStates)
|
||||
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.annihilate) (φs : List 𝓕.CrAnStates) :
|
||||
normalOrder (ofCrAnList (φs ++ [φ])) =
|
||||
normalOrder (ofCrAnList φs) * ofCrAnState φ := by
|
||||
𝓝(ofCrAnList (φs ++ [φ])) = 𝓝(ofCrAnList φs) * ofCrAnState φ := by
|
||||
rw [normalOrder_ofCrAnList, normalOrderSign_append_annihlate φ hφ φs,
|
||||
normalOrderList_append_annihilate φ hφ φs, ofCrAnList_append, ofCrAnList_singleton,
|
||||
normalOrder_ofCrAnList, smul_mul_assoc]
|
||||
|
||||
lemma normalOrder_mul_annihilate (φ : 𝓕.CrAnStates)
|
||||
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.annihilate)
|
||||
(a : CrAnAlgebra 𝓕) :
|
||||
normalOrder (a * ofCrAnState φ) = normalOrder a * ofCrAnState φ := by
|
||||
(a : CrAnAlgebra 𝓕) : 𝓝(a * ofCrAnState φ) = 𝓝(a) * ofCrAnState φ := by
|
||||
change (normalOrder ∘ₗ mulLinearMap.flip (ofCrAnState φ)) a =
|
||||
(mulLinearMap.flip (ofCrAnState φ) ∘ₗ normalOrder) a
|
||||
refine LinearMap.congr_fun (ofCrAnListBasis.ext fun l ↦ ?_) a
|
||||
|
@ -94,8 +92,8 @@ lemma normalOrder_mul_annihilate (φ : 𝓕.CrAnStates)
|
|||
normalOrder_ofCrAnList_append_annihilate φ hφ]
|
||||
|
||||
lemma normalOrder_crPart_mul (φ : 𝓕.States) (a : CrAnAlgebra 𝓕) :
|
||||
normalOrder (crPart (StateAlgebra.ofState φ) * a) =
|
||||
crPart (StateAlgebra.ofState φ) * normalOrder a := by
|
||||
𝓝(crPart (StateAlgebra.ofState φ) * a) =
|
||||
crPart (StateAlgebra.ofState φ) * 𝓝(a) := by
|
||||
match φ with
|
||||
| .inAsymp φ =>
|
||||
rw [crPart, StateAlgebra.ofState, FreeAlgebra.lift_ι_apply]
|
||||
|
@ -106,8 +104,8 @@ lemma normalOrder_crPart_mul (φ : 𝓕.States) (a : CrAnAlgebra 𝓕) :
|
|||
| .outAsymp φ => simp
|
||||
|
||||
lemma normalOrder_mul_anPart (φ : 𝓕.States) (a : CrAnAlgebra 𝓕) :
|
||||
normalOrder (a * anPart (StateAlgebra.ofState φ)) =
|
||||
normalOrder a * anPart (StateAlgebra.ofState φ) := by
|
||||
𝓝(a * anPart (StateAlgebra.ofState φ)) =
|
||||
𝓝(a) * anPart (StateAlgebra.ofState φ) := by
|
||||
match φ with
|
||||
| .inAsymp φ => simp
|
||||
| .position φ =>
|
||||
|
@ -127,9 +125,8 @@ The main result of this section is `normalOrder_superCommute_annihilate_create`.
|
|||
lemma normalOrder_swap_create_annihlate_ofCrAnList_ofCrAnList (φc φa : 𝓕.CrAnStates)
|
||||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(φs φs' : List 𝓕.CrAnStates) :
|
||||
normalOrder (ofCrAnList φs' * ofCrAnState φc * ofCrAnState φa * ofCrAnList φs) =
|
||||
𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
|
||||
normalOrder (ofCrAnList φs' * ofCrAnState φa * ofCrAnState φc * ofCrAnList φs) := by
|
||||
𝓝(ofCrAnList φs' * ofCrAnState φc * ofCrAnState φa * ofCrAnList φs) = 𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
|
||||
𝓝(ofCrAnList φs' * ofCrAnState φa * ofCrAnState φc * ofCrAnList φs) := by
|
||||
rw [mul_assoc, mul_assoc, ← ofCrAnList_cons, ← ofCrAnList_cons, ← ofCrAnList_append]
|
||||
rw [normalOrder_ofCrAnList, normalOrderSign_swap_create_annihlate φc φa hφc hφa]
|
||||
rw [normalOrderList_swap_create_annihlate φc φa hφc hφa, ← smul_smul, ← normalOrder_ofCrAnList]
|
||||
|
@ -139,9 +136,8 @@ lemma normalOrder_swap_create_annihlate_ofCrAnList_ofCrAnList (φc φa : 𝓕.Cr
|
|||
lemma normalOrder_swap_create_annihlate_ofCrAnList (φc φa : 𝓕.CrAnStates)
|
||||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(φs : List 𝓕.CrAnStates) (a : 𝓕.CrAnAlgebra) :
|
||||
normalOrder (ofCrAnList φs * ofCrAnState φc * ofCrAnState φa * a) =
|
||||
𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
|
||||
normalOrder (ofCrAnList φs * ofCrAnState φa * ofCrAnState φc * a) := by
|
||||
𝓝(ofCrAnList φs * ofCrAnState φc * ofCrAnState φa * a) = 𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
|
||||
𝓝(ofCrAnList φs * ofCrAnState φa * ofCrAnState φc * a) := by
|
||||
change (normalOrder ∘ₗ mulLinearMap (ofCrAnList φs * ofCrAnState φc * ofCrAnState φa)) a =
|
||||
(smulLinearMap _ ∘ₗ normalOrder ∘ₗ
|
||||
mulLinearMap (ofCrAnList φs * ofCrAnState φa * ofCrAnState φc)) a
|
||||
|
@ -154,9 +150,8 @@ lemma normalOrder_swap_create_annihlate_ofCrAnList (φc φa : 𝓕.CrAnStates)
|
|||
lemma normalOrder_swap_create_annihlate (φc φa : 𝓕.CrAnStates)
|
||||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(a b : 𝓕.CrAnAlgebra) :
|
||||
normalOrder (a * ofCrAnState φc * ofCrAnState φa * b) =
|
||||
𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
|
||||
normalOrder (a * ofCrAnState φa * ofCrAnState φc * b) := by
|
||||
𝓝(a * ofCrAnState φc * ofCrAnState φa * b) = 𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
|
||||
𝓝(a * ofCrAnState φa * ofCrAnState φc * b) := by
|
||||
rw [mul_assoc, mul_assoc, mul_assoc, mul_assoc]
|
||||
change (normalOrder ∘ₗ mulLinearMap.flip (ofCrAnState φc * (ofCrAnState φa * b))) a =
|
||||
(smulLinearMap (𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa)) ∘ₗ
|
||||
|
@ -170,7 +165,7 @@ lemma normalOrder_swap_create_annihlate (φc φa : 𝓕.CrAnStates)
|
|||
lemma normalOrder_superCommute_create_annihilate (φc φa : 𝓕.CrAnStates)
|
||||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(a b : 𝓕.CrAnAlgebra) :
|
||||
normalOrder (a * superCommute (ofCrAnState φc) (ofCrAnState φa) * b) = 0 := by
|
||||
𝓝(a * [ofCrAnState φc, ofCrAnState φa]ₛca * b) = 0 := by
|
||||
simp only [superCommute_ofCrAnState_ofCrAnState, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [mul_sub, sub_mul, map_sub, ← smul_mul_assoc, ← mul_assoc, ← mul_assoc,
|
||||
normalOrder_swap_create_annihlate φc φa hφc hφa]
|
||||
|
@ -179,17 +174,16 @@ lemma normalOrder_superCommute_create_annihilate (φc φa : 𝓕.CrAnStates)
|
|||
lemma normalOrder_superCommute_annihilate_create (φc φa : 𝓕.CrAnStates)
|
||||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(a b : 𝓕.CrAnAlgebra) :
|
||||
normalOrder (a * superCommute (ofCrAnState φa) (ofCrAnState φc) * b) = 0 := by
|
||||
𝓝(a * [ofCrAnState φa, ofCrAnState φc]ₛca * b) = 0 := by
|
||||
rw [superCommute_ofCrAnState_ofCrAnState_symm]
|
||||
simp only [instCommGroup.eq_1, neg_smul, mul_neg, Algebra.mul_smul_comm, neg_mul,
|
||||
Algebra.smul_mul_assoc, map_neg, map_smul, neg_eq_zero, smul_eq_zero]
|
||||
exact Or.inr (normalOrder_superCommute_create_annihilate φc φa hφc hφa ..)
|
||||
|
||||
lemma normalOrder_swap_crPart_anPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
|
||||
normalOrder (a * (crPart (StateAlgebra.ofState φ)) * (anPart (StateAlgebra.ofState φ')) * b) =
|
||||
𝓝(a * (crPart (StateAlgebra.ofState φ)) * (anPart (StateAlgebra.ofState φ')) * b) =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
normalOrder (a * (anPart (StateAlgebra.ofState φ')) *
|
||||
(crPart (StateAlgebra.ofState φ)) * b) := by
|
||||
𝓝(a * (anPart (StateAlgebra.ofState φ')) * (crPart (StateAlgebra.ofState φ)) * b) := by
|
||||
match φ, φ' with
|
||||
| _, .inAsymp φ' => simp
|
||||
| .outAsymp φ, _ => simp
|
||||
|
@ -223,14 +217,14 @@ Using the results from above.
|
|||
-/
|
||||
|
||||
lemma normalOrder_swap_anPart_crPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
|
||||
normalOrder (a * (anPart (StateAlgebra.ofState φ)) * (crPart (StateAlgebra.ofState φ')) * b) =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • normalOrder (a * (crPart (StateAlgebra.ofState φ')) *
|
||||
𝓝(a * (anPart (StateAlgebra.ofState φ)) * (crPart (StateAlgebra.ofState φ')) * b) =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • 𝓝(a * (crPart (StateAlgebra.ofState φ')) *
|
||||
(anPart (StateAlgebra.ofState φ)) * b) := by
|
||||
simp [normalOrder_swap_crPart_anPart, smul_smul]
|
||||
|
||||
lemma normalOrder_superCommute_crPart_anPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
|
||||
normalOrder (a * superCommute
|
||||
(crPart (StateAlgebra.ofState φ)) (anPart (StateAlgebra.ofState φ')) * b) = 0 := by
|
||||
𝓝(a * superCommute
|
||||
(crPart (StateAlgebra.ofState φ)) (anPart (StateAlgebra.ofState φ')) * b) = 0 := by
|
||||
match φ, φ' with
|
||||
| _, .inAsymp φ' => simp
|
||||
| .outAsymp φ', _ => simp
|
||||
|
@ -248,7 +242,7 @@ lemma normalOrder_superCommute_crPart_anPart (φ φ' : 𝓕.States) (a b : CrAnA
|
|||
exact normalOrder_superCommute_create_annihilate _ _ rfl rfl ..
|
||||
|
||||
lemma normalOrder_superCommute_anPart_crPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
|
||||
normalOrder (a * superCommute
|
||||
𝓝(a * superCommute
|
||||
(anPart (StateAlgebra.ofState φ)) (crPart (StateAlgebra.ofState φ')) * b) = 0 := by
|
||||
match φ, φ' with
|
||||
| .inAsymp φ', _ => simp
|
||||
|
@ -274,7 +268,7 @@ lemma normalOrder_superCommute_anPart_crPart (φ φ' : 𝓕.States) (a b : CrAnA
|
|||
|
||||
@[simp]
|
||||
lemma normalOrder_crPart_mul_crPart (φ φ' : 𝓕.States) :
|
||||
normalOrder (crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ')) =
|
||||
𝓝(crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ')) =
|
||||
crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') := by
|
||||
rw [normalOrder_crPart_mul]
|
||||
conv_lhs => rw [← mul_one (crPart (StateAlgebra.ofState φ'))]
|
||||
|
@ -283,7 +277,7 @@ lemma normalOrder_crPart_mul_crPart (φ φ' : 𝓕.States) :
|
|||
|
||||
@[simp]
|
||||
lemma normalOrder_anPart_mul_anPart (φ φ' : 𝓕.States) :
|
||||
normalOrder (anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ')) =
|
||||
𝓝(anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ')) =
|
||||
anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
|
||||
rw [normalOrder_mul_anPart]
|
||||
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ))]
|
||||
|
@ -292,7 +286,7 @@ lemma normalOrder_anPart_mul_anPart (φ φ' : 𝓕.States) :
|
|||
|
||||
@[simp]
|
||||
lemma normalOrder_crPart_mul_anPart (φ φ' : 𝓕.States) :
|
||||
normalOrder (crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ')) =
|
||||
𝓝(crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ')) =
|
||||
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
|
||||
rw [normalOrder_crPart_mul]
|
||||
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ'))]
|
||||
|
@ -301,7 +295,7 @@ lemma normalOrder_crPart_mul_anPart (φ φ' : 𝓕.States) :
|
|||
|
||||
@[simp]
|
||||
lemma normalOrder_anPart_mul_crPart (φ φ' : 𝓕.States) :
|
||||
normalOrder (anPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ')) =
|
||||
𝓝(anPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ')) =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
(crPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ)) := by
|
||||
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ'))]
|
||||
|
@ -311,7 +305,7 @@ lemma normalOrder_anPart_mul_crPart (φ φ' : 𝓕.States) :
|
|||
simp
|
||||
|
||||
lemma normalOrder_ofState_mul_ofState (φ φ' : 𝓕.States) :
|
||||
normalOrder (ofState φ * ofState φ') =
|
||||
𝓝(ofState φ * ofState φ') =
|
||||
crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') +
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
(crPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ)) +
|
||||
|
@ -333,10 +327,9 @@ TODO "Split the following two lemmas up into smaller parts."
|
|||
lemma normalOrder_superCommute_ofCrAnList_create_create_ofCrAnList
|
||||
(φc φc' : 𝓕.CrAnStates) (hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
|
||||
(hφc' : 𝓕 |>ᶜ φc' = CreateAnnihilate.create) (φs φs' : List 𝓕.CrAnStates) :
|
||||
(normalOrder (ofCrAnList φs *
|
||||
superCommute (ofCrAnState φc) (ofCrAnState φc') * ofCrAnList φs')) =
|
||||
(𝓝(ofCrAnList φs * [ofCrAnState φc, ofCrAnState φc']ₛca * ofCrAnList φs')) =
|
||||
normalOrderSign (φs ++ φc' :: φc :: φs') •
|
||||
(ofCrAnList (createFilter φs) * superCommute (ofCrAnState φc) (ofCrAnState φc') *
|
||||
(ofCrAnList (createFilter φs) * [ofCrAnState φc, ofCrAnState φc']ₛca *
|
||||
ofCrAnList (createFilter φs') * ofCrAnList (annihilateFilter (φs ++ φs'))) := by
|
||||
rw [superCommute_ofCrAnState_ofCrAnState, mul_sub, sub_mul, map_sub]
|
||||
conv_lhs =>
|
||||
|
@ -395,8 +388,7 @@ lemma normalOrder_superCommute_ofCrAnList_annihilate_annihilate_ofCrAnList
|
|||
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(hφa' : 𝓕 |>ᶜ φa' = CreateAnnihilate.annihilate)
|
||||
(φs φs' : List 𝓕.CrAnStates) :
|
||||
(normalOrder (ofCrAnList φs *
|
||||
superCommute (ofCrAnState φa) (ofCrAnState φa') * ofCrAnList φs')) =
|
||||
𝓝(ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca * ofCrAnList φs') =
|
||||
normalOrderSign (φs ++ φa' :: φa :: φs') •
|
||||
(ofCrAnList (createFilter (φs ++ φs'))
|
||||
* ofCrAnList (annihilateFilter φs) * superCommute (ofCrAnState φa) (ofCrAnState φa')
|
||||
|
@ -466,16 +458,16 @@ lemma normalOrder_superCommute_ofCrAnList_annihilate_annihilate_ofCrAnList
|
|||
-/
|
||||
|
||||
lemma ofCrAnList_superCommute_normalOrder_ofCrAnList (φs φs' : List 𝓕.CrAnStates) :
|
||||
⟨ofCrAnList φs, normalOrder (ofCrAnList φs')⟩ₛca =
|
||||
ofCrAnList φs * normalOrder (ofCrAnList φs') -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • normalOrder (ofCrAnList φs') * ofCrAnList φs := by
|
||||
[ofCrAnList φs, 𝓝(ofCrAnList φs')]ₛca =
|
||||
ofCrAnList φs * 𝓝(ofCrAnList φs') -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝(ofCrAnList φs') * ofCrAnList φs := by
|
||||
simp [normalOrder_ofCrAnList, map_smul, superCommute_ofCrAnList_ofCrAnList, ofCrAnList_append,
|
||||
smul_sub, smul_smul, mul_comm]
|
||||
|
||||
lemma ofCrAnList_superCommute_normalOrder_ofStateList (φs : List 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) : ⟨ofCrAnList φs, normalOrder (ofStateList φs')⟩ₛca =
|
||||
ofCrAnList φs * normalOrder (ofStateList φs') -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • normalOrder (ofStateList φs') * ofCrAnList φs := by
|
||||
(φs' : List 𝓕.States) : [ofCrAnList φs, 𝓝(ofStateList φs')]ₛca =
|
||||
ofCrAnList φs * 𝓝(ofStateList φs') -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝(ofStateList φs') * ofCrAnList φs := by
|
||||
rw [ofStateList_sum, map_sum, Finset.mul_sum, Finset.smul_sum, Finset.sum_mul,
|
||||
← Finset.sum_sub_distrib, map_sum]
|
||||
congr
|
||||
|
@ -491,23 +483,22 @@ lemma ofCrAnList_superCommute_normalOrder_ofStateList (φs : List 𝓕.CrAnState
|
|||
|
||||
lemma ofCrAnList_mul_normalOrder_ofStateList_eq_superCommute (φs : List 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) :
|
||||
ofCrAnList φs * normalOrder (ofStateList φs') =
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • normalOrder (ofStateList φs') * ofCrAnList φs
|
||||
+ ⟨ofCrAnList φs, normalOrder (ofStateList φs')⟩ₛca := by
|
||||
ofCrAnList φs * 𝓝(ofStateList φs') =
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝(ofStateList φs') * ofCrAnList φs
|
||||
+ [ofCrAnList φs, 𝓝(ofStateList φs')]ₛca := by
|
||||
simp [ofCrAnList_superCommute_normalOrder_ofStateList]
|
||||
|
||||
lemma ofCrAnState_mul_normalOrder_ofStateList_eq_superCommute (φ : 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) :
|
||||
ofCrAnState φ * normalOrder (ofStateList φs') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • normalOrder (ofStateList φs') * ofCrAnState φ
|
||||
+ ⟨ofCrAnState φ, normalOrder (ofStateList φs')⟩ₛca := by
|
||||
ofCrAnState φ * 𝓝(ofStateList φs') = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝(ofStateList φs') * ofCrAnState φ
|
||||
+ [ofCrAnState φ, 𝓝(ofStateList φs')]ₛca := by
|
||||
simp [← ofCrAnList_singleton, ofCrAnList_mul_normalOrder_ofStateList_eq_superCommute]
|
||||
|
||||
lemma anPart_mul_normalOrder_ofStateList_eq_superCommute (φ : 𝓕.States)
|
||||
(φs' : List 𝓕.States) :
|
||||
anPart (StateAlgebra.ofState φ) * normalOrder (ofStateList φs') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • normalOrder (ofStateList φs' * anPart (StateAlgebra.ofState φ))
|
||||
+ ⟨anPart (StateAlgebra.ofState φ), normalOrder (ofStateList φs')⟩ₛca := by
|
||||
anPart (StateAlgebra.ofState φ) * 𝓝(ofStateList φs') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝(ofStateList φs' * anPart (StateAlgebra.ofState φ))
|
||||
+ [anPart (StateAlgebra.ofState φ), 𝓝(ofStateList φs')]ₛca := by
|
||||
rw [normalOrder_mul_anPart]
|
||||
match φ with
|
||||
| .inAsymp φ => simp
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue