refactor: Lint
This commit is contained in:
parent
833a570ce8
commit
7d983f5b4b
5 changed files with 23 additions and 20 deletions
|
@ -130,7 +130,6 @@ lemma coMetric_apply_one : coMetric.hom (1 : ℂ) = coMetricVal := by
|
|||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
coMetric, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul]
|
||||
|
||||
|
||||
/-!
|
||||
|
||||
## Contraction of metrics
|
||||
|
|
|
@ -145,10 +145,11 @@ lemma contr_contrCoUnit (x : complexCo) :
|
|||
Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
|
||||
Finset.sum_singleton, Fin.sum_univ_three, tmul_add, add_tmul, smul_tmul, tmul_smul, map_add,
|
||||
_root_.map_smul]
|
||||
have h1' (x y : CoeSort.coe complexCo) (z : CoeSort.coe complexContr) :
|
||||
have h1' (x y : CoeSort.coe complexCo) (z : CoeSort.coe complexContr) :
|
||||
(α_ complexCo.V complexContr.V complexCo.V).inv (x ⊗ₜ[ℂ] z ⊗ₜ[ℂ] y) = (x ⊗ₜ[ℂ] z) ⊗ₜ[ℂ] y := rfl
|
||||
repeat rw [h1']
|
||||
have h1'' ( y : CoeSort.coe complexCo) (z : CoeSort.coe complexCo ⊗[ℂ] CoeSort.coe complexContr) :
|
||||
have h1'' (y : CoeSort.coe complexCo)
|
||||
(z : CoeSort.coe complexCo ⊗[ℂ] CoeSort.coe complexContr) :
|
||||
(coContrContraction.hom ▷ complexCo.V) (z ⊗ₜ[ℂ] y) = (coContrContraction.hom z) ⊗ₜ[ℂ] y := rfl
|
||||
repeat rw (config := { transparency := .instances }) [h1'']
|
||||
repeat rw [coContrContraction_basis']
|
||||
|
@ -178,11 +179,14 @@ lemma contr_coContrUnit (x : complexContr) :
|
|||
Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
|
||||
Finset.sum_singleton, Fin.sum_univ_three, tmul_add, add_tmul, smul_tmul, tmul_smul, map_add,
|
||||
_root_.map_smul]
|
||||
have h1' (x y : CoeSort.coe complexContr) (z : CoeSort.coe complexCo) :
|
||||
(α_ complexContr.V complexCo.V complexContr.V).inv (x ⊗ₜ[ℂ] z ⊗ₜ[ℂ] y) = (x ⊗ₜ[ℂ] z) ⊗ₜ[ℂ] y := rfl
|
||||
have h1' (x y : CoeSort.coe complexContr) (z : CoeSort.coe complexCo) :
|
||||
(α_ complexContr.V complexCo.V complexContr.V).inv
|
||||
(x ⊗ₜ[ℂ] z ⊗ₜ[ℂ] y) = (x ⊗ₜ[ℂ] z) ⊗ₜ[ℂ] y := rfl
|
||||
repeat rw [h1']
|
||||
have h1'' ( y : CoeSort.coe complexContr) (z : CoeSort.coe complexContr ⊗[ℂ] CoeSort.coe complexCo) :
|
||||
(contrCoContraction.hom ▷ complexContr.V) (z ⊗ₜ[ℂ] y) = (contrCoContraction.hom z) ⊗ₜ[ℂ] y := rfl
|
||||
have h1'' (y : CoeSort.coe complexContr)
|
||||
(z : CoeSort.coe complexContr ⊗[ℂ] CoeSort.coe complexCo) :
|
||||
(contrCoContraction.hom ▷ complexContr.V) (z ⊗ₜ[ℂ] y) =
|
||||
(contrCoContraction.hom z) ⊗ₜ[ℂ] y := rfl
|
||||
repeat rw (config := { transparency := .instances }) [h1'']
|
||||
repeat rw [contrCoContraction_basis']
|
||||
simp only [Fin.isValue, Action.instMonoidalCategory_tensorUnit_V, ↓reduceIte, reduceCtorEq,
|
||||
|
@ -199,7 +203,6 @@ lemma contr_coContrUnit (x : complexContr) :
|
|||
|
||||
-/
|
||||
|
||||
|
||||
open CategoryTheory
|
||||
|
||||
lemma contrCoUnit_symm :
|
||||
|
|
|
@ -352,8 +352,8 @@ lemma rightAltContraction_apply_metric : (β_ rightHanded altRightHanded).hom.ho
|
|||
((rightHanded.V ◁ rightAltContraction.hom ▷ altRightHanded.V) (((rightHanded.V ◁
|
||||
(α_ rightHanded.V altRightHanded.V altRightHanded.V).inv)
|
||||
((α_ rightHanded.V rightHanded.V (altRightHanded.V ⊗ altRightHanded.V)).hom
|
||||
((x1 ⊗ₜ[ℂ] x2) ⊗ₜ[ℂ] y1 ⊗ₜ[ℂ] y2)))))
|
||||
= x1 ⊗ₜ[ℂ] ((λ_ altRightHanded.V).hom ((rightAltContraction.hom (x2 ⊗ₜ[ℂ] y1)) ⊗ₜ[ℂ] y2)) := rfl
|
||||
((x1 ⊗ₜ[ℂ] x2) ⊗ₜ[ℂ] y1 ⊗ₜ[ℂ] y2))))) = x1 ⊗ₜ[ℂ] ((λ_ altRightHanded.V).hom
|
||||
((rightAltContraction.hom (x2 ⊗ₜ[ℂ] y1)) ⊗ₜ[ℂ] y2)) := rfl
|
||||
repeat rw (config := { transparency := .instances }) [h1]
|
||||
repeat rw [rightAltContraction_basis]
|
||||
simp only [Fin.isValue, Fin.val_one, Fin.val_zero, one_ne_zero, ↓reduceIte, zero_tmul, map_zero,
|
||||
|
@ -374,7 +374,8 @@ lemma altRightContraction_apply_metric : (β_ altRightHanded rightHanded).hom.ho
|
|||
rw [rightMetricVal_expand_tmul, altRightMetricVal_expand_tmul]
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
Fin.isValue, tmul_add, tmul_neg, sub_tmul, map_add, map_neg, map_sub]
|
||||
have h1 (x1 x2 : altRightHanded) (y1 y2 : rightHanded) : (altRightHanded.V ◁ (λ_ rightHanded.V).hom)
|
||||
have h1 (x1 x2 : altRightHanded) (y1 y2 : rightHanded) :
|
||||
(altRightHanded.V ◁ (λ_ rightHanded.V).hom)
|
||||
((altRightHanded.V ◁ altRightContraction.hom ▷ rightHanded.V) (((altRightHanded.V ◁
|
||||
(α_ altRightHanded.V rightHanded.V rightHanded.V).inv)
|
||||
((α_ altRightHanded.V altRightHanded.V (rightHanded.V ⊗ rightHanded.V)).hom
|
||||
|
|
|
@ -251,7 +251,7 @@ lemma contr_altLeftLeftUnit (x : leftHanded) :
|
|||
simp only [Fin.isValue, one_smul]
|
||||
|
||||
/-- Contraction on the right with `leftAltLeftUnit` does nothing. -/
|
||||
lemma contr_leftAltLeftUnit (x : altLeftHanded) :
|
||||
lemma contr_leftAltLeftUnit (x : altLeftHanded) :
|
||||
(λ_ altLeftHanded).hom.hom
|
||||
(((altLeftContraction) ▷ altLeftHanded).hom
|
||||
((α_ _ _ altLeftHanded).inv.hom
|
||||
|
@ -333,29 +333,29 @@ lemma contr_rightAltRightUnit (x : altRightHanded) :
|
|||
open CategoryTheory
|
||||
|
||||
lemma altLeftLeftUnit_symm :
|
||||
(altLeftLeftUnit.hom (1 : ℂ)) = (altLeftHanded ◁ 𝟙 _).hom ((β_ leftHanded altLeftHanded ).hom.hom
|
||||
(leftAltLeftUnit.hom (1 : ℂ))) := by
|
||||
(altLeftLeftUnit.hom (1 : ℂ)) = (altLeftHanded ◁ 𝟙 _).hom
|
||||
((β_ leftHanded altLeftHanded).hom.hom (leftAltLeftUnit.hom (1 : ℂ))) := by
|
||||
rw [altLeftLeftUnit_apply_one, altLeftLeftUnitVal_expand_tmul]
|
||||
rw [leftAltLeftUnit_apply_one, leftAltLeftUnitVal_expand_tmul]
|
||||
rfl
|
||||
|
||||
lemma leftAltLeftUnit_symm :
|
||||
(leftAltLeftUnit.hom (1 : ℂ)) = (leftHanded ◁ 𝟙 _).hom ((β_ altLeftHanded leftHanded ).hom.hom
|
||||
(leftAltLeftUnit.hom (1 : ℂ)) = (leftHanded ◁ 𝟙 _).hom ((β_ altLeftHanded leftHanded).hom.hom
|
||||
(altLeftLeftUnit.hom (1 : ℂ))) := by
|
||||
rw [altLeftLeftUnit_apply_one, altLeftLeftUnitVal_expand_tmul]
|
||||
rw [leftAltLeftUnit_apply_one, leftAltLeftUnitVal_expand_tmul]
|
||||
rfl
|
||||
|
||||
lemma altRightRightUnit_symm :
|
||||
(altRightRightUnit.hom (1 : ℂ)) = (altRightHanded ◁ 𝟙 _).hom ((β_ rightHanded altRightHanded ).hom.hom
|
||||
(rightAltRightUnit.hom (1 : ℂ))) := by
|
||||
(altRightRightUnit.hom (1 : ℂ)) = (altRightHanded ◁ 𝟙 _).hom
|
||||
((β_ rightHanded altRightHanded).hom.hom (rightAltRightUnit.hom (1 : ℂ))) := by
|
||||
rw [altRightRightUnit_apply_one, altRightRightUnitVal_expand_tmul]
|
||||
rw [rightAltRightUnit_apply_one, rightAltRightUnitVal_expand_tmul]
|
||||
rfl
|
||||
|
||||
lemma rightAltRightUnit_symm :
|
||||
(rightAltRightUnit.hom (1 : ℂ)) = (rightHanded ◁ 𝟙 _).hom ((β_ altRightHanded rightHanded ).hom.hom
|
||||
(altRightRightUnit.hom (1 : ℂ))) := by
|
||||
(rightAltRightUnit.hom (1 : ℂ)) = (rightHanded ◁ 𝟙 _).hom
|
||||
((β_ altRightHanded rightHanded).hom.hom (altRightRightUnit.hom (1 : ℂ))) := by
|
||||
rw [altRightRightUnit_apply_one, altRightRightUnitVal_expand_tmul]
|
||||
rw [rightAltRightUnit_apply_one, rightAltRightUnitVal_expand_tmul]
|
||||
rfl
|
||||
|
|
|
@ -183,7 +183,7 @@ def complexLorentzTensor : TensorSpecies where
|
|||
| Color.downR => Fermion.rightAltRightUnit_symm
|
||||
| Color.up => Lorentz.coContrUnit_symm
|
||||
| Color.down => Lorentz.contrCoUnit_symm
|
||||
contr_metric := fun c =>
|
||||
contr_metric := fun c =>
|
||||
match c with
|
||||
| Color.upL => by simpa using Fermion.leftAltContraction_apply_metric
|
||||
| Color.downL => by simpa using Fermion.altLeftContraction_apply_metric
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue