refactor: Lint
This commit is contained in:
parent
833a570ce8
commit
7d983f5b4b
5 changed files with 23 additions and 20 deletions
|
@ -251,7 +251,7 @@ lemma contr_altLeftLeftUnit (x : leftHanded) :
|
|||
simp only [Fin.isValue, one_smul]
|
||||
|
||||
/-- Contraction on the right with `leftAltLeftUnit` does nothing. -/
|
||||
lemma contr_leftAltLeftUnit (x : altLeftHanded) :
|
||||
lemma contr_leftAltLeftUnit (x : altLeftHanded) :
|
||||
(λ_ altLeftHanded).hom.hom
|
||||
(((altLeftContraction) ▷ altLeftHanded).hom
|
||||
((α_ _ _ altLeftHanded).inv.hom
|
||||
|
@ -333,29 +333,29 @@ lemma contr_rightAltRightUnit (x : altRightHanded) :
|
|||
open CategoryTheory
|
||||
|
||||
lemma altLeftLeftUnit_symm :
|
||||
(altLeftLeftUnit.hom (1 : ℂ)) = (altLeftHanded ◁ 𝟙 _).hom ((β_ leftHanded altLeftHanded ).hom.hom
|
||||
(leftAltLeftUnit.hom (1 : ℂ))) := by
|
||||
(altLeftLeftUnit.hom (1 : ℂ)) = (altLeftHanded ◁ 𝟙 _).hom
|
||||
((β_ leftHanded altLeftHanded).hom.hom (leftAltLeftUnit.hom (1 : ℂ))) := by
|
||||
rw [altLeftLeftUnit_apply_one, altLeftLeftUnitVal_expand_tmul]
|
||||
rw [leftAltLeftUnit_apply_one, leftAltLeftUnitVal_expand_tmul]
|
||||
rfl
|
||||
|
||||
lemma leftAltLeftUnit_symm :
|
||||
(leftAltLeftUnit.hom (1 : ℂ)) = (leftHanded ◁ 𝟙 _).hom ((β_ altLeftHanded leftHanded ).hom.hom
|
||||
(leftAltLeftUnit.hom (1 : ℂ)) = (leftHanded ◁ 𝟙 _).hom ((β_ altLeftHanded leftHanded).hom.hom
|
||||
(altLeftLeftUnit.hom (1 : ℂ))) := by
|
||||
rw [altLeftLeftUnit_apply_one, altLeftLeftUnitVal_expand_tmul]
|
||||
rw [leftAltLeftUnit_apply_one, leftAltLeftUnitVal_expand_tmul]
|
||||
rfl
|
||||
|
||||
lemma altRightRightUnit_symm :
|
||||
(altRightRightUnit.hom (1 : ℂ)) = (altRightHanded ◁ 𝟙 _).hom ((β_ rightHanded altRightHanded ).hom.hom
|
||||
(rightAltRightUnit.hom (1 : ℂ))) := by
|
||||
(altRightRightUnit.hom (1 : ℂ)) = (altRightHanded ◁ 𝟙 _).hom
|
||||
((β_ rightHanded altRightHanded).hom.hom (rightAltRightUnit.hom (1 : ℂ))) := by
|
||||
rw [altRightRightUnit_apply_one, altRightRightUnitVal_expand_tmul]
|
||||
rw [rightAltRightUnit_apply_one, rightAltRightUnitVal_expand_tmul]
|
||||
rfl
|
||||
|
||||
lemma rightAltRightUnit_symm :
|
||||
(rightAltRightUnit.hom (1 : ℂ)) = (rightHanded ◁ 𝟙 _).hom ((β_ altRightHanded rightHanded ).hom.hom
|
||||
(altRightRightUnit.hom (1 : ℂ))) := by
|
||||
(rightAltRightUnit.hom (1 : ℂ)) = (rightHanded ◁ 𝟙 _).hom
|
||||
((β_ altRightHanded rightHanded).hom.hom (altRightRightUnit.hom (1 : ℂ))) := by
|
||||
rw [altRightRightUnit_apply_one, altRightRightUnitVal_expand_tmul]
|
||||
rw [rightAltRightUnit_apply_one, rightAltRightUnitVal_expand_tmul]
|
||||
rfl
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue