feat: Some lemmas about Bispinors
This commit is contained in:
parent
f2eaa2ee43
commit
7ea91f459c
2 changed files with 30 additions and 11 deletions
|
@ -29,10 +29,31 @@ open Lorentz
|
|||
def contrBispinorUp (p : complexContr) :=
|
||||
{p | μ ⊗ pauliCo | μ α β}ᵀ.tensor
|
||||
|
||||
lemma tensorNode_contrBispinorUp (p : complexContr) :
|
||||
(tensorNode (contrBispinorUp p)).tensor = {p | μ ⊗ pauliCo | μ α β}ᵀ.tensor := by
|
||||
rw [contrBispinorUp, tensorNode_tensor]
|
||||
|
||||
/-- A bispinor `pₐₐ` created from a lorentz vector `p^μ`. -/
|
||||
def contrBispinorDown (p : complexContr) :=
|
||||
{Fermion.altRightMetric | β β' ⊗ Fermion.altLeftMetric | α α' ⊗
|
||||
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
|
||||
(contrBispinorUp p) | α β}ᵀ.tensor
|
||||
|
||||
/-- Expands the tensor node of `contrBispinorDown` into a tensor tree based on
|
||||
`contrBispinorUp`. -/
|
||||
lemma tensorNode_contrBispinorDown (p : complexContr) :
|
||||
{contrBispinorDown p | α β}ᵀ.tensor = {Fermion.altLeftMetric | α α' ⊗
|
||||
Fermion.altRightMetric | β β' ⊗ (contrBispinorUp p) | α β}ᵀ.tensor := by
|
||||
rw [contrBispinorDown, tensorNode_tensor]
|
||||
|
||||
/-- Expansion of a `contrBispinorDown` into the original contravariant tensor nested
|
||||
between pauli matrices and metrics. -/
|
||||
lemma contrBispinorDown_full_nested (p : complexContr) :
|
||||
{contrBispinorDown p | α β}ᵀ.tensor = {Fermion.altLeftMetric | α α' ⊗
|
||||
Fermion.altRightMetric | β β' ⊗ (p | μ ⊗ pauliCo | μ α β)}ᵀ.tensor := by
|
||||
conv =>
|
||||
lhs
|
||||
rw [tensorNode_contrBispinorDown]
|
||||
rw [contr_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_snd <| tensorNode_contrBispinorUp p]
|
||||
|
||||
end complexLorentzTensor
|
||||
end
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue