feat: Properties of lists
This commit is contained in:
parent
db9f7ebfa9
commit
7ee877af55
2 changed files with 326 additions and 0 deletions
183
HepLean/Mathematics/List.lean
Normal file
183
HepLean/Mathematics/List.lean
Normal file
|
@ -0,0 +1,183 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.LinearAlgebra.PiTensorProduct
|
||||
import Mathlib.Tactic.Polyrith
|
||||
import Mathlib.Tactic.Linarith
|
||||
/-!
|
||||
# List lemmas
|
||||
|
||||
|
||||
|
||||
-/
|
||||
namespace HepLean.List
|
||||
|
||||
open Fin
|
||||
variable {n : Nat}
|
||||
|
||||
def Fin.equivCons {n m : ℕ} (e : Fin n ≃ Fin m) : Fin n.succ ≃ Fin m.succ where
|
||||
toFun := Fin.cons 0 (Fin.succ ∘ e.toFun)
|
||||
invFun := Fin.cons 0 (Fin.succ ∘ e.invFun)
|
||||
left_inv i := by
|
||||
rcases Fin.eq_zero_or_eq_succ i with hi | hi
|
||||
· subst hi
|
||||
simp
|
||||
· obtain ⟨j, hj⟩ := hi
|
||||
subst hj
|
||||
simp
|
||||
right_inv i := by
|
||||
rcases Fin.eq_zero_or_eq_succ i with hi | hi
|
||||
· subst hi
|
||||
simp
|
||||
· obtain ⟨j, hj⟩ := hi
|
||||
subst hj
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma Fin.equivCons_trans {n m k : ℕ} (e : Fin n ≃ Fin m) (f : Fin m ≃ Fin k) :
|
||||
Fin.equivCons (e.trans f) = (Fin.equivCons e).trans (Fin.equivCons f) := by
|
||||
refine Equiv.ext_iff.mpr ?_
|
||||
intro x
|
||||
simp [Fin.equivCons]
|
||||
match x with
|
||||
| ⟨0, h⟩ => rfl
|
||||
| ⟨i + 1, h⟩ => rfl
|
||||
|
||||
@[simp]
|
||||
lemma Fin.equivCons_castOrderIso {n m : ℕ} (h : n = m) :
|
||||
(Fin.equivCons (Fin.castOrderIso h).toEquiv) = (Fin.castOrderIso (by simp [h])).toEquiv := by
|
||||
refine Equiv.ext_iff.mpr ?_
|
||||
intro x
|
||||
simp [Fin.equivCons]
|
||||
match x with
|
||||
| ⟨0, h⟩ => rfl
|
||||
| ⟨i + 1, h⟩ => rfl
|
||||
|
||||
@[simp]
|
||||
lemma Fin.equivCons_symm_succ {n m : ℕ} (e : Fin n ≃ Fin m) (i : ℕ) (hi : i + 1 < m.succ) :
|
||||
(Fin.equivCons e).symm ⟨i + 1, hi⟩ = (e.symm ⟨i , Nat.succ_lt_succ_iff.mp hi⟩).succ := by
|
||||
simp [Fin.equivCons]
|
||||
have hi : ⟨i + 1, hi⟩ = Fin.succ ⟨i, Nat.succ_lt_succ_iff.mp hi⟩ := by rfl
|
||||
rw [hi]
|
||||
rw [Fin.cons_succ]
|
||||
simp
|
||||
|
||||
def insertEquiv {α : Type} (r : α → α → Prop) [DecidableRel r] (a : α) : (l : List α) →
|
||||
Fin (a :: l).length ≃ Fin (List.orderedInsert r a l).length
|
||||
| [] => Equiv.refl _
|
||||
| b :: l => by
|
||||
if r a b then
|
||||
exact (Fin.castOrderIso (List.orderedInsert_length r (b :: l) a).symm).toEquiv
|
||||
else
|
||||
let e := insertEquiv (r := r) a l
|
||||
let e2 : Fin (a :: b :: l).length ≃ Fin (b :: a :: l).length :=
|
||||
Equiv.swap ⟨0, Nat.zero_lt_succ (b :: l).length⟩ ⟨1, Nat.one_lt_succ_succ l.length⟩
|
||||
let e3 : Fin (b :: a :: l).length ≃ Fin (b :: List.orderedInsert r a l).length :=
|
||||
Fin.equivCons e
|
||||
let e4 : Fin (b :: List.orderedInsert r a l).length ≃ Fin (List.orderedInsert r a (b :: l)).length :=
|
||||
(Fin.castOrderIso (by
|
||||
rw [List.orderedInsert_length]
|
||||
simpa using List.orderedInsert_length r l a
|
||||
)).toEquiv
|
||||
exact e2.trans (e3.trans e4)
|
||||
|
||||
lemma insertEquiv_congr {α : Type} {r : α → α → Prop} [DecidableRel r] (a : α) (l l' : List α)
|
||||
(h : l = l') : insertEquiv r a l = (Fin.castOrderIso (by simp [h])).toEquiv.trans
|
||||
((insertEquiv r a l').trans (Fin.castOrderIso (by simp [h])).toEquiv) := by
|
||||
subst h
|
||||
rfl
|
||||
|
||||
lemma insertEquiv_cons_pos {α : Type} {r : α → α → Prop} [DecidableRel r] (a b : α) (hab : r a b)
|
||||
(l : List α) : insertEquiv r a (b :: l) =
|
||||
(Fin.castOrderIso (List.orderedInsert_length r (b :: l) a).symm).toEquiv := by
|
||||
simp [insertEquiv, hab]
|
||||
|
||||
lemma insertEquiv_cons_neg {α : Type} {r : α → α → Prop} [DecidableRel r] (a b : α) (hab : ¬ r a b)
|
||||
(l : List α) : insertEquiv r a (b :: l) =
|
||||
let e := insertEquiv r a l
|
||||
let e2 : Fin (a :: b :: l).length ≃ Fin (b :: a :: l).length :=
|
||||
Equiv.swap ⟨0, Nat.zero_lt_succ (b :: l).length⟩ ⟨1, Nat.one_lt_succ_succ l.length⟩
|
||||
let e3 : Fin (b :: a :: l).length ≃ Fin (b :: List.orderedInsert r a l).length :=
|
||||
Fin.equivCons e
|
||||
let e4 : Fin (b :: List.orderedInsert r a l).length ≃ Fin (List.orderedInsert r a (b :: l)).length :=
|
||||
(Fin.castOrderIso (by
|
||||
rw [List.orderedInsert_length]
|
||||
simpa using List.orderedInsert_length r l a
|
||||
)).toEquiv
|
||||
e2.trans (e3.trans e4) := by
|
||||
simp [insertEquiv, hab]
|
||||
|
||||
lemma insertEquiv_get {α : Type} {r : α → α → Prop} [DecidableRel r] (a : α) : (l : List α) →
|
||||
(a :: l).get ∘ (insertEquiv r a l).symm = (List.orderedInsert r a l).get
|
||||
| [] => by
|
||||
simp [insertEquiv]
|
||||
| b :: l => by
|
||||
by_cases hr : r a b
|
||||
· rw [insertEquiv_cons_pos a b hr l]
|
||||
simp_all only [List.orderedInsert.eq_2, List.length_cons, OrderIso.toEquiv_symm, symm_castOrderIso,
|
||||
RelIso.coe_fn_toEquiv]
|
||||
ext x : 1
|
||||
simp_all only [Function.comp_apply, castOrderIso_apply, List.get_eq_getElem, List.length_cons, coe_cast,
|
||||
↓reduceIte]
|
||||
· rw [insertEquiv_cons_neg a b hr l]
|
||||
trans (b :: List.orderedInsert r a l).get ∘ Fin.cast (by
|
||||
rw [List.orderedInsert_length]
|
||||
simp [List.orderedInsert_length])
|
||||
· simp
|
||||
ext x
|
||||
match x with
|
||||
| ⟨0, h⟩ => rfl
|
||||
| ⟨Nat.succ x, h⟩ =>
|
||||
simp
|
||||
have hswap (n : Fin (b :: a :: l).length) :
|
||||
(a :: b :: l).get (Equiv.swap ⟨0, by simp⟩ ⟨1, by simp⟩ n) = (b :: a :: l).get n := by
|
||||
match n with
|
||||
| ⟨0, h⟩ => rfl
|
||||
| ⟨1, h⟩ => rfl
|
||||
| ⟨Nat.succ (Nat.succ x), h⟩ => rfl
|
||||
trans (a :: b :: l).get (Equiv.swap ⟨0, by simp⟩ ⟨1, by simp⟩ ((insertEquiv r a l).symm ⟨x, by simpa [List.orderedInsert_length, hr] using h⟩).succ)
|
||||
· simp
|
||||
· rw [hswap]
|
||||
simp
|
||||
change _ = (List.orderedInsert r a l).get _
|
||||
rw [← insertEquiv_get (r := r) a l]
|
||||
simp
|
||||
· simp_all only [List.orderedInsert.eq_2, List.length_cons]
|
||||
ext x : 1
|
||||
simp_all only [Function.comp_apply, List.get_eq_getElem, List.length_cons, coe_cast, ↓reduceIte]
|
||||
|
||||
def insertionSortEquiv {α : Type} (r : α → α → Prop) [DecidableRel r] : (l : List α) →
|
||||
Fin l.length ≃ Fin (List.insertionSort r l).length
|
||||
| [] => Equiv.refl _
|
||||
| a :: l =>
|
||||
(Fin.equivCons (insertionSortEquiv r l)).trans (insertEquiv r a (List.insertionSort r l))
|
||||
|
||||
|
||||
lemma insertionSortEquiv_get {α : Type} {r : α → α → Prop} [DecidableRel r] : (l : List α) →
|
||||
l.get ∘ (insertionSortEquiv r l).symm = (List.insertionSort r l).get
|
||||
| [] => by
|
||||
simp [insertionSortEquiv]
|
||||
| a :: l => by
|
||||
rw [insertionSortEquiv]
|
||||
change ((a :: l).get ∘ ((Fin.equivCons (insertionSortEquiv r l))).symm) ∘ (insertEquiv r a (List.insertionSort r l)).symm = _
|
||||
have hl : (a :: l).get ∘ ((Fin.equivCons (insertionSortEquiv r l))).symm = (a :: List.insertionSort r l).get := by
|
||||
ext x
|
||||
match x with
|
||||
| ⟨0, h⟩ => rfl
|
||||
| ⟨Nat.succ x, h⟩ =>
|
||||
change _ = (List.insertionSort r l).get _
|
||||
rw [← insertionSortEquiv_get (r := r) l]
|
||||
rfl
|
||||
rw [hl]
|
||||
rw [insertEquiv_get (r := r) a (List.insertionSort r l)]
|
||||
rfl
|
||||
|
||||
lemma insertionSort_eq_ofFn {α : Type} {r : α → α → Prop} [DecidableRel r] (l : List α) :
|
||||
List.insertionSort r l = List.ofFn (l.get ∘ (insertionSortEquiv r l).symm) := by
|
||||
rw [insertionSortEquiv_get (r := r)]
|
||||
exact Eq.symm (List.ofFn_get (List.insertionSort r l))
|
||||
|
||||
|
||||
end HepLean.List
|
|
@ -8,6 +8,7 @@ import HepLean.Lorentz.RealVector.Basic
|
|||
import HepLean.Mathematics.Fin
|
||||
import HepLean.SpaceTime.Basic
|
||||
import HepLean.Mathematics.SuperAlgebra.Basic
|
||||
import HepLean.Mathematics.List
|
||||
import HepLean.Meta.Notes.Basic
|
||||
import Init.Data.List.Sort.Basic
|
||||
/-!
|
||||
|
@ -319,6 +320,7 @@ def listToConstDestList : (l : List (index S)) →
|
|||
| i :: l, f =>
|
||||
(f ⟨0, Nat.zero_lt_succ l.length⟩, i.1, i.2) :: listToConstDestList l (f ∘ Fin.succ)
|
||||
|
||||
@[simp]
|
||||
lemma listToConstDestList_length (l : List (index S)) (f : Fin l.length → Fin 2) :
|
||||
(listToConstDestList l f).length = l.length := by
|
||||
induction l with
|
||||
|
@ -327,6 +329,26 @@ lemma listToConstDestList_length (l : List (index S)) (f : Fin l.length → Fin
|
|||
simp only [listToConstDestList, List.length_cons, Fin.zero_eta, Prod.mk.eta, add_left_inj]
|
||||
rw [ih]
|
||||
|
||||
lemma listToConstDestList_get (l : List (index S)) (f : Fin l.length → Fin 2) :
|
||||
(listToConstDestList l f).get = (fun i => (f i, l.get i)) ∘ Fin.cast (by simp) := by
|
||||
induction l with
|
||||
| nil =>
|
||||
funext i
|
||||
exact Fin.elim0 i
|
||||
| cons i l ih =>
|
||||
simp [listToConstDestList]
|
||||
funext x
|
||||
match x with
|
||||
| ⟨0, h⟩ => rfl
|
||||
| ⟨x + 1, h⟩ =>
|
||||
simp
|
||||
change (listToConstDestList l _).get _ = _
|
||||
rw [ih]
|
||||
simp
|
||||
|
||||
|
||||
|
||||
|
||||
lemma toConstDestAlgebra_single (x : ℂ) : (l : FreeMonoid (index S)) →
|
||||
toConstDestAlgebra (FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm (MonoidAlgebra.single l x))
|
||||
= ∑ (f : Fin l.length → Fin 2), FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm
|
||||
|
@ -429,6 +451,127 @@ instance : DecidableRel (@timeOrderRel S) :=
|
|||
def timeOrder (q : index S → Fin 2) : S.FieldAlgebra →ₗ[ℂ] S.FieldAlgebra :=
|
||||
koszulOrder timeOrderRel q
|
||||
|
||||
lemma listToConstDestList_insertionSortEquiv (l : List (index S))
|
||||
(f : Fin l.length → Fin 2) :
|
||||
(HepLean.List.insertionSortEquiv ConstDestAlgebra.timeOrderRel (listToConstDestList l f))
|
||||
= (Fin.castOrderIso (by simp)).toEquiv.trans ((HepLean.List.insertionSortEquiv timeOrderRel l).trans
|
||||
(Fin.castOrderIso (by simp)).toEquiv) := by
|
||||
induction l with
|
||||
| nil =>
|
||||
simp [listToConstDestList, HepLean.List.insertionSortEquiv]
|
||||
| cons i l ih =>
|
||||
simp [listToConstDestList]
|
||||
conv_lhs => simp [HepLean.List.insertionSortEquiv]
|
||||
have h1 (l' : List (ConstDestAlgebra.index S)) :
|
||||
(HepLean.List.insertEquiv ConstDestAlgebra.timeOrderRel (f ⟨0, by simp⟩, i.1, i.2) l') =
|
||||
(Fin.castOrderIso (by simp)).toEquiv.trans
|
||||
((HepLean.List.insertEquiv timeOrderRel (i.1, i.2) (l'.unzip).2).trans
|
||||
(Fin.castOrderIso (by simp [List.orderedInsert_length])).toEquiv) := by
|
||||
induction l' with
|
||||
| nil =>
|
||||
simp [HepLean.List.insertEquiv]
|
||||
rfl
|
||||
| cons j l' ih' =>
|
||||
by_cases hr : ConstDestAlgebra.timeOrderRel (f ⟨0, by simp⟩, i) j
|
||||
· rw [HepLean.List.insertEquiv_cons_pos]
|
||||
· erw [HepLean.List.insertEquiv_cons_pos]
|
||||
· rfl
|
||||
· exact hr
|
||||
· exact hr
|
||||
· rw [HepLean.List.insertEquiv_cons_neg]
|
||||
· erw [HepLean.List.insertEquiv_cons_neg]
|
||||
· simp
|
||||
erw [ih']
|
||||
ext x
|
||||
simp
|
||||
congr 2
|
||||
match x with
|
||||
| ⟨0, h⟩ => rfl
|
||||
| ⟨1, h⟩ => rfl
|
||||
| ⟨Nat.succ (Nat.succ x), h⟩ => rfl
|
||||
· exact hr
|
||||
· exact hr
|
||||
erw [h1]
|
||||
rw [ih]
|
||||
simp
|
||||
ext x
|
||||
conv_rhs => simp [HepLean.List.insertionSortEquiv]
|
||||
simp
|
||||
have h2' (i : ConstDestAlgebra.index S) (l' : List (ConstDestAlgebra.index S)) :
|
||||
(List.orderedInsert ConstDestAlgebra.timeOrderRel i l').unzip.2 =
|
||||
List.orderedInsert timeOrderRel i.2 l'.unzip.2 := by
|
||||
induction l' with
|
||||
| nil =>
|
||||
simp [HepLean.List.insertEquiv]
|
||||
| cons j l' ih' =>
|
||||
by_cases hij : ConstDestAlgebra.timeOrderRel i j
|
||||
· rw [List.orderedInsert_of_le]
|
||||
· erw [List.orderedInsert_of_le]
|
||||
· simp
|
||||
· exact hij
|
||||
· exact hij
|
||||
· simp [hij]
|
||||
have hn : ¬ timeOrderRel i.2 j.2 := hij
|
||||
simp [hn]
|
||||
simpa using ih'
|
||||
have h2 (l' : List (ConstDestAlgebra.index S)) :
|
||||
(List.insertionSort ConstDestAlgebra.timeOrderRel l').unzip.2 =
|
||||
List.insertionSort timeOrderRel l'.unzip.2 := by
|
||||
induction l' with
|
||||
| nil =>
|
||||
simp [HepLean.List.insertEquiv]
|
||||
| cons i l' ih' =>
|
||||
simp
|
||||
simp at h2'
|
||||
rw [h2']
|
||||
congr
|
||||
simpa using ih'
|
||||
rw [HepLean.List.insertEquiv_congr _ _ _ (h2 _)]
|
||||
simp
|
||||
have h3 : (List.insertionSort timeOrderRel (listToConstDestList l (f ∘ Fin.succ)).unzip.2) =
|
||||
List.insertionSort timeOrderRel l := by
|
||||
congr
|
||||
have h3' (l : List (index S)) (f : Fin l.length → Fin 2) :
|
||||
(listToConstDestList l (f)).unzip.2 = l := by
|
||||
induction l with
|
||||
| nil => rfl
|
||||
| cons i l ih' =>
|
||||
simp [listToConstDestList]
|
||||
simpa using ih' (f ∘ Fin.succ)
|
||||
rw [h3']
|
||||
rw [HepLean.List.insertEquiv_congr _ _ _ h3]
|
||||
simp
|
||||
rfl
|
||||
|
||||
lemma listToConstDestList_timeOrder (l : List (index S))
|
||||
(f : Fin l.length → Fin 2) :
|
||||
List.insertionSort ConstDestAlgebra.timeOrderRel (listToConstDestList l f) =
|
||||
listToConstDestList (List.insertionSort timeOrderRel l)
|
||||
(f ∘ (HepLean.List.insertionSortEquiv (timeOrderRel) l).symm) := by
|
||||
let l1 := List.insertionSort (ConstDestAlgebra.timeOrderRel) (listToConstDestList l f)
|
||||
let l2 := listToConstDestList (List.insertionSort timeOrderRel l)
|
||||
(f ∘ (HepLean.List.insertionSortEquiv (timeOrderRel) l).symm)
|
||||
change l1 = l2
|
||||
have hlen : l1.length = l2.length := by
|
||||
simp [l1, l2]
|
||||
have hget : l1.get = l2.get ∘ Fin.cast hlen := by
|
||||
rw [← HepLean.List.insertionSortEquiv_get]
|
||||
rw [listToConstDestList_get]
|
||||
rw [listToConstDestList_get]
|
||||
rw [← HepLean.List.insertionSortEquiv_get]
|
||||
funext i
|
||||
simp
|
||||
congr 2
|
||||
· rw [listToConstDestList_insertionSortEquiv]
|
||||
simp
|
||||
· rw [listToConstDestList_insertionSortEquiv]
|
||||
simp
|
||||
apply List.ext_get hlen
|
||||
rw [hget]
|
||||
simp
|
||||
|
||||
|
||||
/-f ∘ (HepLean.List.insertionSortEquiv (timeOrder q) l).symm.toFun-/
|
||||
/-
|
||||
lemma timeOrder_comm_toConstDestAlgebra (q : index S → Fin 2)
|
||||
(q' : ConstDestAlgebra.index S → Fin 2) :
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue