feat: Properties of lists

This commit is contained in:
jstoobysmith 2024-12-10 07:51:02 +00:00
parent db9f7ebfa9
commit 7ee877af55
2 changed files with 326 additions and 0 deletions

View file

@ -8,6 +8,7 @@ import HepLean.Lorentz.RealVector.Basic
import HepLean.Mathematics.Fin
import HepLean.SpaceTime.Basic
import HepLean.Mathematics.SuperAlgebra.Basic
import HepLean.Mathematics.List
import HepLean.Meta.Notes.Basic
import Init.Data.List.Sort.Basic
/-!
@ -319,6 +320,7 @@ def listToConstDestList : (l : List (index S)) →
| i :: l, f =>
(f ⟨0, Nat.zero_lt_succ l.length⟩, i.1, i.2) :: listToConstDestList l (f ∘ Fin.succ)
@[simp]
lemma listToConstDestList_length (l : List (index S)) (f : Fin l.length → Fin 2) :
(listToConstDestList l f).length = l.length := by
induction l with
@ -327,6 +329,26 @@ lemma listToConstDestList_length (l : List (index S)) (f : Fin l.length → Fin
simp only [listToConstDestList, List.length_cons, Fin.zero_eta, Prod.mk.eta, add_left_inj]
rw [ih]
lemma listToConstDestList_get (l : List (index S)) (f : Fin l.length → Fin 2) :
(listToConstDestList l f).get = (fun i => (f i, l.get i)) ∘ Fin.cast (by simp) := by
induction l with
| nil =>
funext i
exact Fin.elim0 i
| cons i l ih =>
simp [listToConstDestList]
funext x
match x with
| ⟨0, h⟩ => rfl
| ⟨x + 1, h⟩ =>
simp
change (listToConstDestList l _).get _ = _
rw [ih]
simp
lemma toConstDestAlgebra_single (x : ) : (l : FreeMonoid (index S)) →
toConstDestAlgebra (FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm (MonoidAlgebra.single l x))
= ∑ (f : Fin l.length → Fin 2), FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm
@ -429,6 +451,127 @@ instance : DecidableRel (@timeOrderRel S) :=
def timeOrder (q : index S → Fin 2) : S.FieldAlgebra →ₗ[] S.FieldAlgebra :=
koszulOrder timeOrderRel q
lemma listToConstDestList_insertionSortEquiv (l : List (index S))
(f : Fin l.length → Fin 2) :
(HepLean.List.insertionSortEquiv ConstDestAlgebra.timeOrderRel (listToConstDestList l f))
= (Fin.castOrderIso (by simp)).toEquiv.trans ((HepLean.List.insertionSortEquiv timeOrderRel l).trans
(Fin.castOrderIso (by simp)).toEquiv) := by
induction l with
| nil =>
simp [listToConstDestList, HepLean.List.insertionSortEquiv]
| cons i l ih =>
simp [listToConstDestList]
conv_lhs => simp [HepLean.List.insertionSortEquiv]
have h1 (l' : List (ConstDestAlgebra.index S)) :
(HepLean.List.insertEquiv ConstDestAlgebra.timeOrderRel (f ⟨0, by simp⟩, i.1, i.2) l') =
(Fin.castOrderIso (by simp)).toEquiv.trans
((HepLean.List.insertEquiv timeOrderRel (i.1, i.2) (l'.unzip).2).trans
(Fin.castOrderIso (by simp [List.orderedInsert_length])).toEquiv) := by
induction l' with
| nil =>
simp [HepLean.List.insertEquiv]
rfl
| cons j l' ih' =>
by_cases hr : ConstDestAlgebra.timeOrderRel (f ⟨0, by simp⟩, i) j
· rw [HepLean.List.insertEquiv_cons_pos]
· erw [HepLean.List.insertEquiv_cons_pos]
· rfl
· exact hr
· exact hr
· rw [HepLean.List.insertEquiv_cons_neg]
· erw [HepLean.List.insertEquiv_cons_neg]
· simp
erw [ih']
ext x
simp
congr 2
match x with
| ⟨0, h⟩ => rfl
| ⟨1, h⟩ => rfl
| ⟨Nat.succ (Nat.succ x), h⟩ => rfl
· exact hr
· exact hr
erw [h1]
rw [ih]
simp
ext x
conv_rhs => simp [HepLean.List.insertionSortEquiv]
simp
have h2' (i : ConstDestAlgebra.index S) (l' : List (ConstDestAlgebra.index S)) :
(List.orderedInsert ConstDestAlgebra.timeOrderRel i l').unzip.2 =
List.orderedInsert timeOrderRel i.2 l'.unzip.2 := by
induction l' with
| nil =>
simp [HepLean.List.insertEquiv]
| cons j l' ih' =>
by_cases hij : ConstDestAlgebra.timeOrderRel i j
· rw [List.orderedInsert_of_le]
· erw [List.orderedInsert_of_le]
· simp
· exact hij
· exact hij
· simp [hij]
have hn : ¬ timeOrderRel i.2 j.2 := hij
simp [hn]
simpa using ih'
have h2 (l' : List (ConstDestAlgebra.index S)) :
(List.insertionSort ConstDestAlgebra.timeOrderRel l').unzip.2 =
List.insertionSort timeOrderRel l'.unzip.2 := by
induction l' with
| nil =>
simp [HepLean.List.insertEquiv]
| cons i l' ih' =>
simp
simp at h2'
rw [h2']
congr
simpa using ih'
rw [HepLean.List.insertEquiv_congr _ _ _ (h2 _)]
simp
have h3 : (List.insertionSort timeOrderRel (listToConstDestList l (f ∘ Fin.succ)).unzip.2) =
List.insertionSort timeOrderRel l := by
congr
have h3' (l : List (index S)) (f : Fin l.length → Fin 2) :
(listToConstDestList l (f)).unzip.2 = l := by
induction l with
| nil => rfl
| cons i l ih' =>
simp [listToConstDestList]
simpa using ih' (f ∘ Fin.succ)
rw [h3']
rw [HepLean.List.insertEquiv_congr _ _ _ h3]
simp
rfl
lemma listToConstDestList_timeOrder (l : List (index S))
(f : Fin l.length → Fin 2) :
List.insertionSort ConstDestAlgebra.timeOrderRel (listToConstDestList l f) =
listToConstDestList (List.insertionSort timeOrderRel l)
(f ∘ (HepLean.List.insertionSortEquiv (timeOrderRel) l).symm) := by
let l1 := List.insertionSort (ConstDestAlgebra.timeOrderRel) (listToConstDestList l f)
let l2 := listToConstDestList (List.insertionSort timeOrderRel l)
(f ∘ (HepLean.List.insertionSortEquiv (timeOrderRel) l).symm)
change l1 = l2
have hlen : l1.length = l2.length := by
simp [l1, l2]
have hget : l1.get = l2.get ∘ Fin.cast hlen := by
rw [← HepLean.List.insertionSortEquiv_get]
rw [listToConstDestList_get]
rw [listToConstDestList_get]
rw [← HepLean.List.insertionSortEquiv_get]
funext i
simp
congr 2
· rw [listToConstDestList_insertionSortEquiv]
simp
· rw [listToConstDestList_insertionSortEquiv]
simp
apply List.ext_get hlen
rw [hget]
simp
/-f ∘ (HepLean.List.insertionSortEquiv (timeOrder q) l).symm.toFun-/
/-
lemma timeOrder_comm_toConstDestAlgebra (q : index S → Fin 2)
(q' : ConstDestAlgebra.index S → Fin 2) :