feat: Add basics for SMNu PlusU1

This commit is contained in:
jstoobysmith 2024-04-18 09:06:16 -04:00
parent 938087ca51
commit 7f447c6df8
4 changed files with 207 additions and 3 deletions

View file

@ -0,0 +1,141 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.SMNu.Basic
import HepLean.AnomalyCancellation.SMNu.Permutations
/-!
# ACC system for SM with RHN
We define the ACC system for the Standard Model with right-handed neutrinos.
-/
universe v u
namespace SMRHN
open SMνCharges
open SMνACCs
open BigOperators
/-- The ACC system for the SM plus RHN with an additional U1. -/
@[simps!]
def PlusU1 (n : ) : ACCSystem where
numberLinear := 4
linearACCs := fun i =>
match i with
| 0 => @accGrav n
| 1 => accSU2
| 2 => accSU3
| 3 => accYY
numberQuadratic := 1
quadraticACCs := fun i =>
match i with
| 0 => accQuad
cubicACC := accCube
namespace PlusU1
variable {n : }
lemma gravSol (S : (PlusU1 n).LinSols) : accGrav S.val = 0 := by
have hS := S.linearSol
simp at hS
exact hS 0
lemma SU2Sol (S : (PlusU1 n).LinSols) : accSU2 S.val = 0 := by
have hS := S.linearSol
simp at hS
exact hS 1
lemma SU3Sol (S : (PlusU1 n).LinSols) : accSU3 S.val = 0 := by
have hS := S.linearSol
simp at hS
exact hS 2
lemma YYsol (S : (PlusU1 n).LinSols) : accYY S.val = 0 := by
have hS := S.linearSol
simp at hS
exact hS 3
lemma quadSol (S : (PlusU1 n).QuadSols) : accQuad S.val = 0 := by
have hS := S.quadSol
simp at hS
exact hS 0
lemma cubeSol (S : (PlusU1 n).Sols) : accCube S.val = 0 := by
exact S.cubicSol
/-- An element of `charges` which satisfies the linear ACCs
gives us a element of `LinSols`. -/
def chargeToLinear (S : (PlusU1 n).charges) (hGrav : accGrav S = 0)
(hSU2 : accSU2 S = 0) (hSU3 : accSU3 S = 0) (hYY : accYY S = 0) :
(PlusU1 n).LinSols :=
⟨S, by
intro i
simp at i
match i with
| 0 => exact hGrav
| 1 => exact hSU2
| 2 => exact hSU3
| 3 => exact hYY⟩
/-- An element of `LinSols` which satisfies the quadratic ACCs
gives us a element of `AnomalyFreeQuad`. -/
def linearToQuad (S : (PlusU1 n).LinSols) (hQ : accQuad S.val = 0) :
(PlusU1 n).QuadSols :=
⟨S, by
intro i
simp at i
match i with
| 0 => exact hQ⟩
/-- An element of `QuadSols` which satisfies the quadratic ACCs
gives us a element of `Sols`. -/
def quadToAF (S : (PlusU1 n).QuadSols) (hc : accCube S.val = 0) :
(PlusU1 n).Sols := ⟨S, hc⟩
/-- An element of `charges` which satisfies the linear and quadratic ACCs
gives us a element of `QuadSols`. -/
def chargeToQuad (S : (PlusU1 n).charges) (hGrav : accGrav S = 0)
(hSU2 : accSU2 S = 0) (hSU3 : accSU3 S = 0) (hYY : accYY S = 0) (hQ : accQuad S = 0) :
(PlusU1 n).QuadSols :=
linearToQuad (chargeToLinear S hGrav hSU2 hSU3 hYY) hQ
/-- An element of `charges` which satisfies the linear, quadratic and cubic ACCs
gives us a element of `Sols`. -/
def chargeToAF (S : (PlusU1 n).charges) (hGrav : accGrav S = 0) (hSU2 : accSU2 S = 0)
(hSU3 : accSU3 S = 0) (hYY : accYY S = 0) (hQ : accQuad S = 0) (hc : accCube S = 0) :
(PlusU1 n).Sols :=
quadToAF (chargeToQuad S hGrav hSU2 hSU3 hYY hQ) hc
/-- An element of `LinSols` which satisfies the quadratic and cubic ACCs
gives us a element of `Sols`. -/
def linearToAF (S : (PlusU1 n).LinSols) (hQ : accQuad S.val = 0)
(hc : accCube S.val = 0) : (PlusU1 n).Sols :=
quadToAF (linearToQuad S hQ) hc
/-- The permutations acting on the ACC system corresponding to the SM with RHN. -/
def perm (n : ) : ACCSystemGroupAction (PlusU1 n) where
group := permGroup n
groupInst := inferInstance
rep := repCharges
linearInvariant := by
intro i
simp at i
match i with
| 0 => exact accGrav_invariant
| 1 => exact accSU2_invariant
| 2 => exact accSU3_invariant
| 3 => exact accYY_invariant
quadInvariant := by
intro i
simp at i
match i with
| 0 => exact accQuad_invariant
cubicInvariant := accCube_invariant
end PlusU1
end SMRHN