feat: Properties of the group SO(3)
This commit is contained in:
parent
a40d21378b
commit
8024aa92a1
4 changed files with 172 additions and 1 deletions
154
HepLean/GroupTheory/SO3/Basic.lean
Normal file
154
HepLean/GroupTheory/SO3/Basic.lean
Normal file
|
@ -0,0 +1,154 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.LinearAlgebra.UnitaryGroup
|
||||
import Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup
|
||||
import Mathlib.Data.Complex.Exponential
|
||||
import Mathlib.Geometry.Manifold.VectorBundle.Basic
|
||||
/-!
|
||||
# the 3d special orthogonal group
|
||||
|
||||
|
||||
|
||||
-/
|
||||
|
||||
namespace GroupTheory
|
||||
open Matrix
|
||||
|
||||
def SO3 : Type := {A : Matrix (Fin 3) (Fin 3) ℝ // A.det = 1 ∧ A * Aᵀ = 1}
|
||||
|
||||
instance SO3Group : Group SO3 where
|
||||
mul A B := ⟨A.1 * B.1,
|
||||
by
|
||||
simp only [det_mul, A.2.1, B.2.1, mul_one],
|
||||
by
|
||||
simp [A.2.2, B.2.2, ← Matrix.mul_assoc, Matrix.mul_assoc]⟩
|
||||
mul_assoc A B C := by
|
||||
apply Subtype.eq
|
||||
exact Matrix.mul_assoc A.1 B.1 C.1
|
||||
one := ⟨1, by simp, by simp⟩
|
||||
one_mul A := by
|
||||
apply Subtype.eq
|
||||
exact Matrix.one_mul A.1
|
||||
mul_one A := by
|
||||
apply Subtype.eq
|
||||
exact Matrix.mul_one A.1
|
||||
inv A := ⟨A.1ᵀ, by simp [A.2], by simp [mul_eq_one_comm.mpr A.2.2]⟩
|
||||
mul_left_inv A := by
|
||||
apply Subtype.eq
|
||||
exact mul_eq_one_comm.mpr A.2.2
|
||||
|
||||
scoped[GroupTheory] notation (name := SO3_notation) "SO(3)" => SO3
|
||||
|
||||
/-- SO3 has the subtype topology. -/
|
||||
instance : TopologicalSpace SO3 := instTopologicalSpaceSubtype
|
||||
|
||||
|
||||
namespace SO3
|
||||
|
||||
@[simp]
|
||||
lemma coe_inv (A : SO3) : (A⁻¹).1 = A.1⁻¹:= by
|
||||
refine (inv_eq_left_inv ?h).symm
|
||||
exact mul_eq_one_comm.mpr A.2.2
|
||||
|
||||
@[simps!]
|
||||
def toGL : SO3 →* GL (Fin 3) ℝ where
|
||||
toFun A := ⟨A.1, (A⁻¹).1, A.2.2, mul_eq_one_comm.mpr A.2.2⟩
|
||||
map_one' := by
|
||||
simp
|
||||
rfl
|
||||
map_mul' x y := by
|
||||
simp
|
||||
ext
|
||||
rfl
|
||||
|
||||
lemma subtype_val_eq_toGL : (Subtype.val : SO3 → Matrix (Fin 3) (Fin 3) ℝ) =
|
||||
Units.val ∘ toGL.toFun := by
|
||||
ext A
|
||||
rfl
|
||||
|
||||
lemma toGL_injective : Function.Injective toGL := by
|
||||
intro A B h
|
||||
apply Subtype.eq
|
||||
rw [@Units.ext_iff] at h
|
||||
simpa using h
|
||||
|
||||
example : TopologicalSpace (GL (Fin 3) ℝ) := by
|
||||
exact Units.instTopologicalSpaceUnits
|
||||
|
||||
@[simps!]
|
||||
def toProd : SO(3) →* (Matrix (Fin 3) (Fin 3) ℝ) × (Matrix (Fin 3) (Fin 3) ℝ)ᵐᵒᵖ :=
|
||||
MonoidHom.comp (Units.embedProduct _) toGL
|
||||
|
||||
lemma toProd_eq_transpose : toProd A = (A.1, ⟨A.1ᵀ⟩) := by
|
||||
simp only [toProd, Units.embedProduct, coe_units_inv, MulOpposite.op_inv, toGL, coe_inv,
|
||||
MonoidHom.coe_comp, MonoidHom.coe_mk, OneHom.coe_mk, Function.comp_apply, Prod.mk.injEq,
|
||||
true_and]
|
||||
refine MulOpposite.unop_inj.mp ?_
|
||||
simp only [MulOpposite.unop_inv, MulOpposite.unop_op]
|
||||
rw [← coe_inv]
|
||||
rfl
|
||||
|
||||
lemma toProd_injective : Function.Injective toProd := by
|
||||
intro A B h
|
||||
rw [toProd_eq_transpose, toProd_eq_transpose] at h
|
||||
rw [@Prod.mk.inj_iff] at h
|
||||
apply Subtype.eq
|
||||
exact h.1
|
||||
|
||||
lemma toProd_continuous : Continuous toProd := by
|
||||
change Continuous (fun A => (A.1, ⟨A.1ᵀ⟩))
|
||||
refine continuous_prod_mk.mpr (And.intro ?_ ?_)
|
||||
exact continuous_iff_le_induced.mpr fun U a => a
|
||||
refine Continuous.comp' ?_ ?_
|
||||
exact MulOpposite.continuous_op
|
||||
refine Continuous.matrix_transpose ?_
|
||||
exact continuous_iff_le_induced.mpr fun U a => a
|
||||
|
||||
|
||||
def embeddingProd : Embedding toProd where
|
||||
inj := toProd_injective
|
||||
induced := by
|
||||
refine (inducing_iff ⇑toProd).mp ?_
|
||||
refine inducing_of_inducing_compose toProd_continuous continuous_fst ?hgf
|
||||
exact (inducing_iff (Prod.fst ∘ ⇑toProd)).mpr rfl
|
||||
|
||||
|
||||
def embeddingGL : Embedding toGL.toFun where
|
||||
inj := toGL_injective
|
||||
induced := by
|
||||
refine ((fun {X} {t t'} => TopologicalSpace.ext_iff.mpr) ?_).symm
|
||||
intro s
|
||||
rw [TopologicalSpace.ext_iff.mp embeddingProd.induced s ]
|
||||
rw [isOpen_induced_iff, isOpen_induced_iff]
|
||||
apply Iff.intro ?_ ?_
|
||||
· intro h
|
||||
obtain ⟨U, hU1, hU2⟩ := h
|
||||
rw [isOpen_induced_iff] at hU1
|
||||
obtain ⟨V, hV1, hV2⟩ := hU1
|
||||
use V
|
||||
simp [hV1]
|
||||
rw [← hU2, ← hV2]
|
||||
rfl
|
||||
· intro h
|
||||
obtain ⟨U, hU1, hU2⟩ := h
|
||||
let t := (Units.embedProduct _) ⁻¹' U
|
||||
use t
|
||||
apply And.intro (isOpen_induced hU1)
|
||||
exact hU2
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
end SO3
|
||||
|
||||
|
||||
end GroupTheory
|
|
@ -163,6 +163,12 @@ lemma toLorentz_joined_to_1 (u v : FourVelocity) : Joined 1 (toLorentz u v) := b
|
|||
simp [PreservesηLin.liftGL, toMatrix, self u]
|
||||
· simp
|
||||
|
||||
lemma toLorentz_in_connected_component_1 (u v : FourVelocity) :
|
||||
toLorentz u v ∈ connectedComponent 1 :=
|
||||
pathComponent_subset_component _ (toLorentz_joined_to_1 u v)
|
||||
|
||||
lemma isProper (u v : FourVelocity) : IsProper (toLorentz u v) :=
|
||||
(isProper_on_connected_component (toLorentz_in_connected_component_1 u v)).mp id_IsProper
|
||||
|
||||
end genBoost
|
||||
|
||||
|
|
|
@ -100,6 +100,11 @@ lemma det_on_connected_component {Λ Λ' : lorentzGroup} (h : Λ' ∈ connected
|
|||
(@IsPreconnected.subsingleton ℤ₂ _ _ _ (isPreconnected_range f.2))
|
||||
(Set.mem_range_self ⟨Λ, hs.2⟩) (Set.mem_range_self ⟨Λ', hΛ'⟩)
|
||||
|
||||
lemma detRep_on_connected_component {Λ Λ' : lorentzGroup} (h : Λ' ∈ connectedComponent Λ) :
|
||||
detRep Λ = detRep Λ' := by
|
||||
simp [detRep_apply, detRep_apply, detContinuous]
|
||||
rw [det_on_connected_component h]
|
||||
|
||||
lemma det_of_joined {Λ Λ' : lorentzGroup} (h : Joined Λ Λ') : Λ.1.1.det = Λ'.1.1.det :=
|
||||
det_on_connected_component $ pathComponent_subset_component _ h
|
||||
|
||||
|
@ -116,6 +121,13 @@ lemma IsProper_iff (Λ : lorentzGroup) : IsProper Λ ↔ detRep Λ = 1 := by
|
|||
rw [detRep_apply, detRep_apply, detContinuous_eq_iff_det_eq]
|
||||
simp only [IsProper, OneMemClass.coe_one, Units.val_one, det_one]
|
||||
|
||||
lemma id_IsProper : IsProper 1 := by
|
||||
simp [IsProper]
|
||||
|
||||
lemma isProper_on_connected_component {Λ Λ' : lorentzGroup} (h : Λ' ∈ connectedComponent Λ) :
|
||||
IsProper Λ ↔ IsProper Λ' := by
|
||||
simp [detRep_apply, detRep_apply, detContinuous]
|
||||
rw [det_on_connected_component h]
|
||||
|
||||
end lorentzGroup
|
||||
|
||||
|
|
|
@ -32,7 +32,6 @@ open Matrix
|
|||
open Complex
|
||||
open ComplexConjugate
|
||||
|
||||
|
||||
/-- The global gauge group of the standard model. TODO: Generalize to quotient. -/
|
||||
abbrev gaugeGroup : Type :=
|
||||
specialUnitaryGroup (Fin 3) ℂ × specialUnitaryGroup (Fin 2) ℂ × unitary ℂ
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue