refactor: replace some simp with exact
This commit is contained in:
parent
167145acef
commit
81f3566be8
13 changed files with 82 additions and 102 deletions
|
@ -73,7 +73,7 @@ lemma linEqPropSol_iff_proj_linEqProp (R : MSSMACC.Sols) :
|
|||
rw [α₁_proj, α₂_proj, h]
|
||||
simp only [neg_zero, Fin.isValue, Fin.reduceFinMk, zero_mul, and_self]
|
||||
· rw [h.2.2]
|
||||
simp
|
||||
exact Rat.mul_zero ((dot Y₃.val) B₃.val)
|
||||
|
||||
/-- A condition which is satisfied if the plane spanned by `R`, `Y₃` and `B₃` lies
|
||||
entirely in the quadratic surface. -/
|
||||
|
@ -119,7 +119,7 @@ lemma inQuadSolProp_iff_proj_inQuadProp (R : MSSMACC.Sols) :
|
|||
simp only [Fin.isValue, Fin.reduceFinMk, mul_eq_zero,
|
||||
OfNat.ofNat_ne_zero, or_self, false_or] at h
|
||||
rw [h.2.1, h.2.2]
|
||||
simp
|
||||
exact Prod.mk_eq_zero.mp rfl
|
||||
|
||||
/-- A condition which is satisfied if the plane spanned by `R`, `Y₃` and `B₃` lies
|
||||
entirely in the cubic surface. -/
|
||||
|
@ -166,7 +166,7 @@ lemma inCubeSolProp_iff_proj_inCubeProp (R : MSSMACC.Sols) :
|
|||
simp only [Fin.isValue, Fin.reduceFinMk, mul_eq_zero, OfNat.ofNat_ne_zero, ne_eq,
|
||||
not_false_eq_true, pow_eq_zero_iff, or_self, false_or] at h
|
||||
rw [h.2.1, h.2.2]
|
||||
simp
|
||||
exact Prod.mk_eq_zero.mp rfl
|
||||
|
||||
/-- Those charge assignments perpendicular to `Y₃` and `B₃` which satisfy the condition
|
||||
`lineEqProp`. -/
|
||||
|
@ -215,7 +215,7 @@ lemma toSolNSQuad_eq_planeY₃B₃_on_α (R : MSSMACC.AnomalyFreePerp) :
|
|||
apply planeY₃B₃_eq
|
||||
rw [α₁, α₂, α₃]
|
||||
ring_nf
|
||||
simp
|
||||
exact ⟨trivial, trivial, trivial⟩
|
||||
|
||||
/-- Given an `R` perpendicular to `Y₃` and `B₃`, an element of `Sols`. This map is
|
||||
not surjective. -/
|
||||
|
@ -243,7 +243,7 @@ lemma toSolNS_proj (T : NotInLineEqSol) : toSolNS (toSolNSProj T.val) = T.val :=
|
|||
rw [h1]
|
||||
have h1 := (lineEqPropSol_iff_lineEqCoeff_zero T.val).mpr.mt T.prop
|
||||
rw [← MulAction.mul_smul, mul_comm, mul_inv_cancel h1]
|
||||
simp
|
||||
exact MulAction.one_smul T.1.val
|
||||
|
||||
/-- A solution to the ACCs, given an element of `inLineEq × ℚ × ℚ × ℚ`. -/
|
||||
def inLineEqToSol : InLineEq × ℚ × ℚ × ℚ → MSSMACC.Sols := fun (R, c₁, c₂, c₃) =>
|
||||
|
@ -286,7 +286,7 @@ lemma inLineEqToSol_proj (T : InLineEqSol) : inLineEqToSol (inLineEqProj T) = T.
|
|||
rw [h1]
|
||||
have h2 := (inQuadSolProp_iff_quadCoeff_zero T.val).mpr.mt T.prop.2
|
||||
rw [← MulAction.mul_smul, mul_comm, mul_inv_cancel h2]
|
||||
simp
|
||||
exact MulAction.one_smul T.1.val
|
||||
|
||||
/-- Given an element of `inQuad × ℚ × ℚ × ℚ`, a solution to the ACCs. -/
|
||||
def inQuadToSol : InQuad × ℚ × ℚ × ℚ → MSSMACC.Sols := fun (R, a₁, a₂, a₃) =>
|
||||
|
@ -331,7 +331,7 @@ lemma inQuadToSol_proj (T : InQuadSol) : inQuadToSol (inQuadProj T) = T.val := b
|
|||
rw [h1]
|
||||
have h2 := (inCubeSolProp_iff_cubicCoeff_zero T.val).mpr.mt T.prop.2.2
|
||||
rw [← MulAction.mul_smul, mul_comm, mul_inv_cancel h2]
|
||||
simp
|
||||
exact MulAction.one_smul T.1.val
|
||||
|
||||
/-- Given a element of `inQuadCube × ℚ × ℚ × ℚ`, a solution to the ACCs. -/
|
||||
def inQuadCubeToSol : InQuadCube × ℚ × ℚ × ℚ → MSSMACC.Sols := fun (R, b₁, b₂, b₃) =>
|
||||
|
@ -371,9 +371,9 @@ lemma inQuadCubeToSol_proj (T : InQuadCubeSol) :
|
|||
ring_nf
|
||||
simp only [Fin.isValue, Fin.reduceFinMk, zero_smul, add_zero, zero_add]
|
||||
rw [← MulAction.mul_smul, mul_comm, mul_inv_cancel]
|
||||
· simp only [one_smul]
|
||||
· exact MulAction.one_smul (T.1).val
|
||||
· rw [show dot Y₃.val B₃.val = 108 by rfl]
|
||||
simp
|
||||
exact Ne.symm (OfNat.zero_ne_ofNat 108)
|
||||
|
||||
/-- A solution from an element of `MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ`. We will
|
||||
show that this map is a surjection. -/
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue