refactor: Update supercommute notation

This commit is contained in:
jstoobysmith 2025-02-13 10:44:15 +00:00
parent d2ce55ddd0
commit 82fae67ba3
12 changed files with 197 additions and 188 deletions

View file

@ -24,24 +24,24 @@ variable (𝓕 : FieldSpecification)
def fieldOpIdealSet : Set (FieldOpFreeAlgebra 𝓕) :=
{ x |
(∃ (φ1 φ2 φ3 : 𝓕.CrAnFieldOp),
x = [ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca)
x = [ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛF]ₛF)
(∃ (φc φc' : 𝓕.CrAnFieldOp) (_ : 𝓕 |>ᶜ φc = .create) (_ : 𝓕 |>ᶜ φc' = .create),
x = [ofCrAnOpF φc, ofCrAnOpF φc']ₛca)
x = [ofCrAnOpF φc, ofCrAnOpF φc']ₛF)
(∃ (φa φa' : 𝓕.CrAnFieldOp) (_ : 𝓕 |>ᶜ φa = .annihilate) (_ : 𝓕 |>ᶜ φa' = .annihilate),
x = [ofCrAnOpF φa, ofCrAnOpF φa']ₛca)
x = [ofCrAnOpF φa, ofCrAnOpF φa']ₛF)
(∃ (φ φ' : 𝓕.CrAnFieldOp) (_ : ¬ (𝓕 |>ₛ φ) = (𝓕 |>ₛ φ')),
x = [ofCrAnOpF φ, ofCrAnOpF φ']ₛca)}
x = [ofCrAnOpF φ, ofCrAnOpF φ']ₛF)}
/-- For a field specification `𝓕`, the algebra `𝓕.FieldOpAlgebra` is defined as the quotient
of the free algebra `𝓕.FieldOpFreeAlgebra` by the ideal generated by
- `[ofCrAnOpF φc, ofCrAnOpF φc']ₛca` for `φc` and `φc'` field creation operators.
- `[ofCrAnOpF φc, ofCrAnOpF φc']ₛF` for `φc` and `φc'` field creation operators.
This corresponds to the condition that two creation operators always super-commute.
- `[ofCrAnOpF φa, ofCrAnOpF φa']ₛca` for `φa` and `φa'` field annihilation operators.
- `[ofCrAnOpF φa, ofCrAnOpF φa']ₛF` for `φa` and `φa'` field annihilation operators.
This corresponds to the condition that two annihilation operators always super-commute.
- `[ofCrAnOpF φ, ofCrAnOpF φ']ₛca` for `φ` and `φ'` operators with different statistics.
- `[ofCrAnOpF φ, ofCrAnOpF φ']ₛF` for `φ` and `φ'` operators with different statistics.
This corresponds to the condition that two operators with different statistics always
super-commute. In other words, fermions and bosons always super-commute.
- `[ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca`. This corresponds to the condition,
- `[ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛF]ₛF`. This corresponds to the condition,
when combined with the conditions above, that the super-commutator is in the center
of the algebra.
-/
@ -70,7 +70,7 @@ lemma equiv_iff_exists_add (x y : FieldOpFreeAlgebra 𝓕) :
rw [equiv_iff_sub_mem_ideal]
simp [ha]
/-- For a field specification `𝓕`, the projection
/-- For a field specification `𝓕`, `ι` is defined as the projection
`𝓕.FieldOpFreeAlgebra →ₐ[] FieldOpAlgebra 𝓕`
@ -100,7 +100,7 @@ lemma ι_of_mem_fieldOpIdealSet (x : FieldOpFreeAlgebra 𝓕) (hx : x ∈ 𝓕.f
simpa using hx
lemma ι_superCommuteF_of_create_create (φc φc' : 𝓕.CrAnFieldOp) (hφc : 𝓕 |>ᶜ φc = .create)
(hφc' : 𝓕 |>ᶜ φc' = .create) : ι [ofCrAnOpF φc, ofCrAnOpF φc']ₛca = 0 := by
(hφc' : 𝓕 |>ᶜ φc' = .create) : ι [ofCrAnOpF φc, ofCrAnOpF φc']ₛF = 0 := by
apply ι_of_mem_fieldOpIdealSet
simp only [fieldOpIdealSet, exists_and_left, Set.mem_setOf_eq]
simp only [exists_prop]
@ -110,7 +110,7 @@ lemma ι_superCommuteF_of_create_create (φc φc' : 𝓕.CrAnFieldOp) (hφc :
lemma ι_superCommuteF_of_annihilate_annihilate (φa φa' : 𝓕.CrAnFieldOp)
(hφa : 𝓕 |>ᶜ φa = .annihilate) (hφa' : 𝓕 |>ᶜ φa' = .annihilate) :
ι [ofCrAnOpF φa, ofCrAnOpF φa']ₛca = 0 := by
ι [ofCrAnOpF φa, ofCrAnOpF φa']ₛF = 0 := by
apply ι_of_mem_fieldOpIdealSet
simp only [fieldOpIdealSet, exists_and_left, Set.mem_setOf_eq]
simp only [exists_prop]
@ -120,7 +120,7 @@ lemma ι_superCommuteF_of_annihilate_annihilate (φa φa' : 𝓕.CrAnFieldOp)
use φa, φa', hφa, hφa'
lemma ι_superCommuteF_of_diff_statistic {φ ψ : 𝓕.CrAnFieldOp}
(h : (𝓕 |>ₛ φ) ≠ (𝓕 |>ₛ ψ)) : ι [ofCrAnOpF φ, ofCrAnOpF ψ]ₛca = 0 := by
(h : (𝓕 |>ₛ φ) ≠ (𝓕 |>ₛ ψ)) : ι [ofCrAnOpF φ, ofCrAnOpF ψ]ₛF = 0 := by
apply ι_of_mem_fieldOpIdealSet
simp only [fieldOpIdealSet, exists_prop, exists_and_left, Set.mem_setOf_eq]
right
@ -129,8 +129,8 @@ lemma ι_superCommuteF_of_diff_statistic {φ ψ : 𝓕.CrAnFieldOp}
use φ, ψ
lemma ι_superCommuteF_zero_of_fermionic (φ ψ : 𝓕.CrAnFieldOp)
(h : [ofCrAnOpF φ, ofCrAnOpF ψ]ₛca ∈ statisticSubmodule fermionic) :
ι [ofCrAnOpF φ, ofCrAnOpF ψ]ₛca = 0 := by
(h : [ofCrAnOpF φ, ofCrAnOpF ψ]ₛF ∈ statisticSubmodule fermionic) :
ι [ofCrAnOpF φ, ofCrAnOpF ψ]ₛF = 0 := by
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton] at h ⊢
rcases statistic_neq_of_superCommuteF_fermionic h with h | h
· simp only [ofCrAnListF_singleton]
@ -139,8 +139,8 @@ lemma ι_superCommuteF_zero_of_fermionic (φ ψ : 𝓕.CrAnFieldOp)
· simp [h]
lemma ι_superCommuteF_ofCrAnOpF_ofCrAnOpF_bosonic_or_zero (φ ψ : 𝓕.CrAnFieldOp) :
[ofCrAnOpF φ, ofCrAnOpF ψ]ₛca ∈ statisticSubmodule bosonic
ι [ofCrAnOpF φ, ofCrAnOpF ψ]ₛca = 0 := by
[ofCrAnOpF φ, ofCrAnOpF ψ]ₛF ∈ statisticSubmodule bosonic
ι [ofCrAnOpF φ, ofCrAnOpF ψ]ₛF = 0 := by
rcases superCommuteF_ofCrAnListF_ofCrAnListF_bosonic_or_fermionic [φ] [ψ] with h | h
· simp_all [ofCrAnListF_singleton]
· simp_all only [ofCrAnListF_singleton]
@ -155,14 +155,14 @@ lemma ι_superCommuteF_ofCrAnOpF_ofCrAnOpF_bosonic_or_zero (φ ψ : 𝓕.CrAnFie
@[simp]
lemma ι_superCommuteF_ofCrAnOpF_superCommuteF_ofCrAnOpF_ofCrAnOpF (φ1 φ2 φ3 : 𝓕.CrAnFieldOp) :
ι [ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca = 0 := by
ι [ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛF]ₛF = 0 := by
apply ι_of_mem_fieldOpIdealSet
simp only [fieldOpIdealSet, exists_prop, exists_and_left, Set.mem_setOf_eq]
left
use φ1, φ2, φ3
lemma ι_superCommuteF_superCommuteF_ofCrAnOpF_ofCrAnOpF_ofCrAnOpF (φ1 φ2 φ3 : 𝓕.CrAnFieldOp) :
ι [[ofCrAnOpF φ1, ofCrAnOpF φ2]ₛca, ofCrAnOpF φ3]ₛca = 0 := by
ι [[ofCrAnOpF φ1, ofCrAnOpF φ2]ₛF, ofCrAnOpF φ3]ₛF = 0 := by
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, ← ofCrAnListF_singleton]
rcases superCommuteF_ofCrAnListF_ofCrAnListF_bosonic_or_fermionic [φ1] [φ2] with h | h
· rw [bonsonic_superCommuteF_symm h]
@ -175,7 +175,7 @@ lemma ι_superCommuteF_superCommuteF_ofCrAnOpF_ofCrAnOpF_ofCrAnOpF (φ1 φ2 φ3
lemma ι_superCommuteF_superCommuteF_ofCrAnOpF_ofCrAnOpF_ofCrAnListF (φ1 φ2 : 𝓕.CrAnFieldOp)
(φs : List 𝓕.CrAnFieldOp) :
ι [[ofCrAnOpF φ1, ofCrAnOpF φ2]ₛca, ofCrAnListF φs]ₛca = 0 := by
ι [[ofCrAnOpF φ1, ofCrAnOpF φ2]ₛF, ofCrAnListF φs]ₛF = 0 := by
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton]
rcases superCommuteF_ofCrAnListF_ofCrAnListF_bosonic_or_fermionic [φ1] [φ2] with h | h
· rw [superCommuteF_bosonic_ofCrAnListF_eq_sum _ _ h]
@ -185,27 +185,27 @@ lemma ι_superCommuteF_superCommuteF_ofCrAnOpF_ofCrAnOpF_ofCrAnListF (φ1 φ2 :
@[simp]
lemma ι_superCommuteF_superCommuteF_ofCrAnOpF_ofCrAnOpF_fieldOpFreeAlgebra (φ1 φ2 : 𝓕.CrAnFieldOp)
(a : 𝓕.FieldOpFreeAlgebra) : ι [[ofCrAnOpF φ1, ofCrAnOpF φ2]ₛca, a]ₛca = 0 := by
change (ι.toLinearMap ∘ₗ superCommuteF [ofCrAnOpF φ1, ofCrAnOpF φ2]ₛca) a = _
have h1 : (ι.toLinearMap ∘ₗ superCommuteF [ofCrAnOpF φ1, ofCrAnOpF φ2]ₛca) = 0 := by
(a : 𝓕.FieldOpFreeAlgebra) : ι [[ofCrAnOpF φ1, ofCrAnOpF φ2]ₛF, a]ₛF = 0 := by
change (ι.toLinearMap ∘ₗ superCommuteF [ofCrAnOpF φ1, ofCrAnOpF φ2]ₛF) a = _
have h1 : (ι.toLinearMap ∘ₗ superCommuteF [ofCrAnOpF φ1, ofCrAnOpF φ2]ₛF) = 0 := by
apply (ofCrAnListFBasis.ext fun l ↦ ?_)
simp [ι_superCommuteF_superCommuteF_ofCrAnOpF_ofCrAnOpF_ofCrAnListF]
rw [h1]
simp
lemma ι_commute_fieldOpFreeAlgebra_superCommuteF_ofCrAnOpF_ofCrAnOpF (φ1 φ2 : 𝓕.CrAnFieldOp)
(a : 𝓕.FieldOpFreeAlgebra) : ι a * ι [ofCrAnOpF φ1, ofCrAnOpF φ2]ₛca -
ι [ofCrAnOpF φ1, ofCrAnOpF φ2]ₛca * ι a = 0 := by
(a : 𝓕.FieldOpFreeAlgebra) : ι a * ι [ofCrAnOpF φ1, ofCrAnOpF φ2]ₛF -
ι [ofCrAnOpF φ1, ofCrAnOpF φ2]ₛF * ι a = 0 := by
rcases ι_superCommuteF_ofCrAnOpF_ofCrAnOpF_bosonic_or_zero φ1 φ2 with h | h
swap
· simp [h]
trans - ι [[ofCrAnOpF φ1, ofCrAnOpF φ2]ₛca, a]ₛca
trans - ι [[ofCrAnOpF φ1, ofCrAnOpF φ2]ₛF, a]ₛF
· rw [bosonic_superCommuteF h]
simp
· simp
lemma ι_superCommuteF_ofCrAnOpF_ofCrAnOpF_mem_center (φ ψ : 𝓕.CrAnFieldOp) :
ι [ofCrAnOpF φ, ofCrAnOpF ψ]ₛca ∈ Subalgebra.center 𝓕.FieldOpAlgebra := by
ι [ofCrAnOpF φ, ofCrAnOpF ψ]ₛF ∈ Subalgebra.center 𝓕.FieldOpAlgebra := by
rw [Subalgebra.mem_center_iff]
intro a
obtain ⟨a, rfl⟩ := ι_surjective a