refactor: Change notation for normal order
This commit is contained in:
parent
ec2e1e7df9
commit
835c47dbf8
7 changed files with 144 additions and 108 deletions
|
@ -33,7 +33,7 @@ is zero.
|
|||
|
||||
lemma ι_normalOrder_superCommute_ofCrAnList_ofCrAnList_eq_zero
|
||||
(φa φa' : 𝓕.CrAnStates) (φs φs' : List 𝓕.CrAnStates) :
|
||||
ι 𝓝(ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca * ofCrAnList φs') = 0 := by
|
||||
ι 𝓝ᶠ(ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca * ofCrAnList φs') = 0 := by
|
||||
rcases CreateAnnihilate.eq_create_or_annihilate (𝓕 |>ᶜ φa) with hφa | hφa
|
||||
<;> rcases CreateAnnihilate.eq_create_or_annihilate (𝓕 |>ᶜ φa') with hφa' | hφa'
|
||||
· rw [normalOrder_superCommute_ofCrAnList_create_create_ofCrAnList φa φa' hφa hφa' φs φs']
|
||||
|
@ -52,7 +52,7 @@ lemma ι_normalOrder_superCommute_ofCrAnList_ofCrAnList_eq_zero
|
|||
|
||||
lemma ι_normalOrder_superCommute_ofCrAnList_eq_zero
|
||||
(φa φa' : 𝓕.CrAnStates) (φs : List 𝓕.CrAnStates)
|
||||
(a : 𝓕.CrAnAlgebra) : ι 𝓝(ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca * a) = 0 := by
|
||||
(a : 𝓕.CrAnAlgebra) : ι 𝓝ᶠ(ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca * a) = 0 := by
|
||||
have hf : ι.toLinearMap ∘ₗ normalOrder ∘ₗ
|
||||
mulLinearMap (ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca) = 0 := by
|
||||
apply ofCrAnListBasis.ext
|
||||
|
@ -67,7 +67,7 @@ lemma ι_normalOrder_superCommute_ofCrAnList_eq_zero
|
|||
|
||||
lemma ι_normalOrder_superCommute_ofCrAnState_eq_zero_mul (φa φa' : 𝓕.CrAnStates)
|
||||
(a b : 𝓕.CrAnAlgebra) :
|
||||
ι 𝓝(a * [ofCrAnState φa, ofCrAnState φa']ₛca * b) = 0 := by
|
||||
ι 𝓝ᶠ(a * [ofCrAnState φa, ofCrAnState φa']ₛca * b) = 0 := by
|
||||
rw [mul_assoc]
|
||||
change (ι.toLinearMap ∘ₗ normalOrder ∘ₗ mulLinearMap.flip
|
||||
([ofCrAnState φa, ofCrAnState φa']ₛca * b)) a = 0
|
||||
|
@ -86,7 +86,7 @@ lemma ι_normalOrder_superCommute_ofCrAnState_eq_zero_mul (φa φa' : 𝓕.CrAnS
|
|||
lemma ι_normalOrder_superCommute_ofCrAnState_ofCrAnList_eq_zero_mul (φa : 𝓕.CrAnStates)
|
||||
(φs : List 𝓕.CrAnStates)
|
||||
(a b : 𝓕.CrAnAlgebra) :
|
||||
ι 𝓝(a * [ofCrAnState φa, ofCrAnList φs]ₛca * b) = 0 := by
|
||||
ι 𝓝ᶠ(a * [ofCrAnState φa, ofCrAnList φs]ₛca * b) = 0 := by
|
||||
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList_eq_sum]
|
||||
rw [Finset.mul_sum, Finset.sum_mul]
|
||||
rw [map_sum, map_sum]
|
||||
|
@ -98,7 +98,7 @@ lemma ι_normalOrder_superCommute_ofCrAnState_ofCrAnList_eq_zero_mul (φa : 𝓕
|
|||
|
||||
lemma ι_normalOrder_superCommute_ofCrAnList_ofCrAnState_eq_zero_mul (φa : 𝓕.CrAnStates)
|
||||
(φs : List 𝓕.CrAnStates) (a b : 𝓕.CrAnAlgebra) :
|
||||
ι 𝓝(a * [ofCrAnList φs, ofCrAnState φa]ₛca * b) = 0 := by
|
||||
ι 𝓝ᶠ(a * [ofCrAnList φs, ofCrAnState φa]ₛca * b) = 0 := by
|
||||
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList_symm, ofCrAnList_singleton]
|
||||
simp only [FieldStatistic.instCommGroup.eq_1, FieldStatistic.ofList_singleton, mul_neg,
|
||||
Algebra.mul_smul_comm, neg_mul, Algebra.smul_mul_assoc, map_neg, map_smul]
|
||||
|
@ -107,7 +107,7 @@ lemma ι_normalOrder_superCommute_ofCrAnList_ofCrAnState_eq_zero_mul (φa : 𝓕
|
|||
|
||||
lemma ι_normalOrder_superCommute_ofCrAnList_ofCrAnList_eq_zero_mul
|
||||
(φs φs' : List 𝓕.CrAnStates) (a b : 𝓕.CrAnAlgebra) :
|
||||
ι 𝓝(a * [ofCrAnList φs, ofCrAnList φs']ₛca * b) = 0 := by
|
||||
ι 𝓝ᶠ(a * [ofCrAnList φs, ofCrAnList φs']ₛca * b) = 0 := by
|
||||
rw [superCommute_ofCrAnList_ofCrAnList_eq_sum, Finset.mul_sum, Finset.sum_mul]
|
||||
rw [map_sum, map_sum]
|
||||
apply Fintype.sum_eq_zero
|
||||
|
@ -119,7 +119,7 @@ lemma ι_normalOrder_superCommute_ofCrAnList_ofCrAnList_eq_zero_mul
|
|||
lemma ι_normalOrder_superCommute_ofCrAnList_eq_zero_mul
|
||||
(φs : List 𝓕.CrAnStates)
|
||||
(a b c : 𝓕.CrAnAlgebra) :
|
||||
ι 𝓝(a * [ofCrAnList φs, c]ₛca * b) = 0 := by
|
||||
ι 𝓝ᶠ(a * [ofCrAnList φs, c]ₛca * b) = 0 := by
|
||||
change (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
|
||||
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommute (ofCrAnList φs)) c = 0
|
||||
have hf : (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
|
||||
|
@ -135,7 +135,7 @@ lemma ι_normalOrder_superCommute_ofCrAnList_eq_zero_mul
|
|||
|
||||
@[simp]
|
||||
lemma ι_normalOrder_superCommute_eq_zero_mul
|
||||
(a b c d : 𝓕.CrAnAlgebra) : ι 𝓝(a * [d, c]ₛca * b) = 0 := by
|
||||
(a b c d : 𝓕.CrAnAlgebra) : ι 𝓝ᶠ(a * [d, c]ₛca * b) = 0 := by
|
||||
change (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
|
||||
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommute.flip c) d = 0
|
||||
have hf : (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
|
||||
|
@ -151,25 +151,25 @@ lemma ι_normalOrder_superCommute_eq_zero_mul
|
|||
|
||||
@[simp]
|
||||
lemma ι_normalOrder_superCommute_eq_zero_mul_right (b c d : 𝓕.CrAnAlgebra) :
|
||||
ι 𝓝([d, c]ₛca * b) = 0 := by
|
||||
ι 𝓝ᶠ([d, c]ₛca * b) = 0 := by
|
||||
rw [← ι_normalOrder_superCommute_eq_zero_mul 1 b c d]
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma ι_normalOrder_superCommute_eq_zero_mul_left (a c d : 𝓕.CrAnAlgebra) :
|
||||
ι 𝓝(a * [d, c]ₛca) = 0 := by
|
||||
ι 𝓝ᶠ(a * [d, c]ₛca) = 0 := by
|
||||
rw [← ι_normalOrder_superCommute_eq_zero_mul a 1 c d]
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma ι_normalOrder_superCommute_eq_zero_mul_mul_right (a b1 b2 c d: 𝓕.CrAnAlgebra) :
|
||||
ι 𝓝(a * [d, c]ₛca * b1 * b2) = 0 := by
|
||||
ι 𝓝ᶠ(a * [d, c]ₛca * b1 * b2) = 0 := by
|
||||
rw [← ι_normalOrder_superCommute_eq_zero_mul a (b1 * b2) c d]
|
||||
congr 2
|
||||
noncomm_ring
|
||||
|
||||
@[simp]
|
||||
lemma ι_normalOrder_superCommute_eq_zero (c d : 𝓕.CrAnAlgebra) : ι 𝓝([d, c]ₛca) = 0 := by
|
||||
lemma ι_normalOrder_superCommute_eq_zero (c d : 𝓕.CrAnAlgebra) : ι 𝓝ᶠ([d, c]ₛca) = 0 := by
|
||||
rw [← ι_normalOrder_superCommute_eq_zero_mul 1 1 c d]
|
||||
simp
|
||||
|
||||
|
@ -180,9 +180,9 @@ lemma ι_normalOrder_superCommute_eq_zero (c d : 𝓕.CrAnAlgebra) : ι 𝓝([d,
|
|||
-/
|
||||
|
||||
lemma ι_normalOrder_zero_of_mem_ideal (a : 𝓕.CrAnAlgebra)
|
||||
(h : a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) : ι 𝓝(a) = 0 := by
|
||||
(h : a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) : ι 𝓝ᶠ(a) = 0 := by
|
||||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] at h
|
||||
let p {k : Set 𝓕.CrAnAlgebra} (a : CrAnAlgebra 𝓕) (h : a ∈ AddSubgroup.closure k) := ι 𝓝(a) = 0
|
||||
let p {k : Set 𝓕.CrAnAlgebra} (a : CrAnAlgebra 𝓕) (h : a ∈ AddSubgroup.closure k) := ι 𝓝ᶠ(a) = 0
|
||||
change p a h
|
||||
apply AddSubgroup.closure_induction
|
||||
· intro x hx
|
||||
|
@ -212,7 +212,7 @@ lemma ι_normalOrder_zero_of_mem_ideal (a : 𝓕.CrAnAlgebra)
|
|||
simp [p]
|
||||
|
||||
lemma ι_normalOrder_eq_of_equiv (a b : 𝓕.CrAnAlgebra) (h : a ≈ b) :
|
||||
ι 𝓝(a) = ι 𝓝(b) := by
|
||||
ι 𝓝ᶠ(a) = ι 𝓝ᶠ(b) := by
|
||||
rw [equiv_iff_sub_mem_ideal] at h
|
||||
rw [LinearMap.sub_mem_ker_iff.mp]
|
||||
simp only [LinearMap.mem_ker, ← map_sub]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue