refactor: Lint and update involutions of Fin n

This commit is contained in:
jstoobysmith 2025-01-06 05:35:35 +00:00
parent 408a676bbd
commit 83908c6d0d
4 changed files with 103 additions and 67 deletions

View file

@ -19,6 +19,9 @@ namespace HepLean.Fin
open Nat
/-- There is an equivalence between involutions of `Fin n.succ` and involutions of
`Fin n` and an optional valid choice of an element in `Fin n` (which is where `0`
in `Fin n.succ` will be sent). -/
def involutionCons (n : ) : {f : Fin n.succ → Fin n.succ // Function.Involutive f } ≃
(f : {f : Fin n → Fin n // Function.Involutive f}) × {i : Option (Fin n) //
∀ (h : i.isSome), f.1 (Option.get i h) = (Option.get i h)} where
@ -180,6 +183,9 @@ lemma involutionCons_ext {n : } {f1 f2 : (f : {f : Fin n → Fin n // Functio
simp_all only
rfl
/-- Given an involution of `Fin n`, the optional choice of an element in `Fin n` which
maps to itself is equivalent to the optional choice of an element in
`Fin (Finset.univ.filter fun i => f.1 i = i).card`. -/
def involutionAddEquiv {n : } (f : {f : Fin n → Fin n // Function.Involutive f}) :
{i : Option (Fin n) // ∀ (h : i.isSome), f.1 (Option.get i h) = (Option.get i h)} ≃
Option (Fin (Finset.univ.filter fun i => f.1 i = i).card) := by
@ -240,9 +246,9 @@ lemma involutionAddEquiv_cast {n : } {f1 f2 : {f : Fin n → Fin n // Functio
rfl
lemma involutionAddEquiv_cast' {m : } {f1 f2 : {f : Fin m → Fin m // Function.Involutive f}}
{N : } (hf : f1 = f2) (n : Option (Fin N))
(hn1 : N = (Finset.filter (fun i => f1.1 i = i) Finset.univ).card)
(hn2 : N = (Finset.filter (fun i => f2.1 i = i) Finset.univ).card) :
{N : } (hf : f1 = f2) (n : Option (Fin N))
(hn1 : N = (Finset.filter (fun i => f1.1 i = i) Finset.univ).card)
(hn2 : N = (Finset.filter (fun i => f2.1 i = i) Finset.univ).card) :
HEq ((involutionAddEquiv f1).symm (Option.map (finCongr hn1) n))
((involutionAddEquiv f2).symm (Option.map (finCongr hn2) n)) := by
subst hf
@ -281,10 +287,19 @@ lemma involutionAddEquiv_isSome_image_zero {n : } :
intro a
simp_all only [↓reduceDIte, Option.isSome_none, Bool.false_eq_true]
/-!
## Equivalences of involutions with no fixed points.
The main aim of thes equivalences is to define `involutionNoFixedZeroEquivProd`.
-/
/-- Fixed point free involutions of `Fin n.succ` can be seperated based on where they sent
`0`. -/
def involutionNoFixedEquivSum {n : } :
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f
∧ ∀ i, f i ≠ i} ≃ Σ (k : Fin (2 * n + 1)),
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f
{f : Fin n.succ → Fin n.succ // Function.Involutive f
∧ ∀ i, f i ≠ i} ≃ Σ (k : Fin n), {f : Fin n.succ → Fin n.succ // Function.Involutive f
∧ (∀ i, f i ≠ i) ∧ f 0 = k.succ} where
toFun f := ⟨(f.1 0).pred (f.2.2 0), ⟨f.1, f.2.1, by simpa using f.2.2⟩⟩
invFun f := ⟨f.2.1, ⟨f.2.2.1, f.2.2.2.1⟩⟩
@ -298,19 +313,12 @@ def involutionNoFixedEquivSum {n : } :
simp
· simp
/-!
## Equivalences of involutions with no fixed points.
The main aim of thes equivalences is to define `involutionNoFixedZeroEquivProd`.
-/
/-- The condition on fixed point free involutions of `Fin n.succ` for a fixed value of `f 0`,
can be modified by conjugation with an equivalence. -/
def involutionNoFixedZeroSetEquivEquiv {n : }
(k : Fin (2 * n + 1)) (e : Fin (2 * n.succ) ≃ Fin (2 * n.succ)) :
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f
∧ (∀ i, f i ≠ i) ∧ f 0 = k.succ} ≃
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive (e.symm ∘ f ∘ e) ∧
(k : Fin n) (e : Fin n.succ ≃ Fin n.succ) :
{f : Fin n.succ → Fin n.succ // Function.Involutive f ∧ (∀ i, f i ≠ i) ∧ f 0 = k.succ} ≃
{f : Fin n.succ → Fin n.succ // Function.Involutive (e.symm ∘ f ∘ e) ∧
(∀ i, (e.symm ∘ f ∘ e) i ≠ i) ∧ (e.symm ∘ f ∘ e) 0 = k.succ} where
toFun f := ⟨e ∘ f.1 ∘ e.symm, by
intro i
@ -330,11 +338,14 @@ def involutionNoFixedZeroSetEquivEquiv {n : }
ext i
simp
def involutionNoFixedZeroSetEquivSetEquiv {n : } (k : Fin (2 * n + 1))
(e : Fin (2 * n.succ) ≃ Fin (2 * n.succ)) :
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive (e.symm ∘ f ∘ e) ∧
(∀ i, (e.symm ∘ f ∘ e) i ≠ i) ∧ (e.symm ∘ f ∘ e) 0 = k.succ} ≃
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f ∧
/-- The condition on fixed point free involutions of `Fin n.succ` for a fixed value of `f 0`
given an equivalence `e`,
can be modified so that only the condition on `f 0` is up-to the equivalence `e`. -/
def involutionNoFixedZeroSetEquivSetEquiv {n : } (k : Fin n)
(e : Fin n.succ ≃ Fin n.succ) :
{f : Fin n.succ → Fin n.succ // Function.Involutive (e.symm ∘ f ∘ e) ∧
(∀ i, (e.symm ∘ f ∘ e) i ≠ i) ∧ (e.symm ∘ f ∘ e) 0 = k.succ} ≃
{f : Fin n.succ → Fin n.succ // Function.Involutive f ∧
(∀ i, f i ≠ i) ∧ (e.symm ∘ f ∘ e) 0 = k.succ} := by
refine Equiv.subtypeEquivRight ?_
intro f
@ -359,21 +370,24 @@ def involutionNoFixedZeroSetEquivSetEquiv {n : } (k : Fin (2 * n + 1))
nth_rewrite 2 [← hn] at hi
simp at hi
def involutionNoFixedZeroSetEquivEquiv' {n : } (k : Fin (2 * n + 1))
(e : Fin (2 * n.succ) ≃ Fin (2 * n.succ)) :
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f ∧
(∀ i, f i ≠ i) ∧ (e.symm ∘ f ∘ e) 0 = k.succ}
≃ {f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f ∧
(∀ i, f i ≠ i) ∧ f (e 0) = e k.succ} := by
/-- Fixed point free involutions of `Fin n.succ` fixing `(e.symm ∘ f ∘ e) = k.succ` for a given `e`
are equivalent to fixing `f (e 0) = e k.succ`. -/
def involutionNoFixedZeroSetEquivEquiv' {n : } (k : Fin n) (e : Fin n.succ ≃ Fin n.succ) :
{f : Fin n.succ → Fin n.succ // Function.Involutive f ∧
(∀ i, f i ≠ i) ∧ (e.symm ∘ f ∘ e) 0 = k.succ} ≃
{f : Fin n.succ → Fin n.succ // Function.Involutive f ∧
(∀ i, f i ≠ i) ∧ f (e 0) = e k.succ} := by
refine Equiv.subtypeEquivRight ?_
simp only [succ_eq_add_one, ne_eq, Function.comp_apply, and_congr_right_iff]
intro f hi h1
exact Equiv.symm_apply_eq e
def involutionNoFixedZeroSetEquivSetOne {n : } (k : Fin (2 * n + 1)) :
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f ∧
/-- Fixed point involutions of `Fin n.succ.succ` with `f 0 = k.succ` are equivalent
to fixed point involutions with `f 0 = 1`. -/
def involutionNoFixedZeroSetEquivSetOne {n : } (k : Fin n.succ) :
{f : Fin n.succ.succ → Fin n.succ.succ // Function.Involutive f ∧
(∀ i, f i ≠ i) ∧ f 0 = k.succ}
≃ {f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f ∧
≃ {f : Fin n.succ.succ → Fin n.succ.succ // Function.Involutive f ∧
(∀ i, f i ≠ i) ∧ f 0 = 1} := by
refine Equiv.trans (involutionNoFixedZeroSetEquivEquiv k (Equiv.swap k.succ 1)) ?_
refine Equiv.trans (involutionNoFixedZeroSetEquivSetEquiv k (Equiv.swap k.succ 1)) ?_
@ -385,9 +399,11 @@ def involutionNoFixedZeroSetEquivSetOne {n : } (k : Fin (2 * n + 1)) :
· exact Ne.symm (Fin.succ_ne_zero k)
· exact Fin.zero_ne_one
/-- Fixed point involutions of `Fin n.succ.succ` fixing `f 0 = 1` are equivalent to
fixed point involutions of `Fin n`. -/
def involutionNoFixedSetOne {n : } :
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f ∧
(∀ i, f i ≠ i) ∧ f 0 = 1} ≃ {f : Fin (2 * n) → Fin (2 * n) // Function.Involutive f ∧
{f : Fin n.succ.succ → Fin n.succ.succ // Function.Involutive f ∧
(∀ i, f i ≠ i) ∧ f 0 = 1} ≃ {f : Fin n → Fin n // Function.Involutive f ∧
(∀ i, f i ≠ i)} where
toFun f := by
have hf1 : f.1 1 = 0 := by
@ -395,14 +411,14 @@ def involutionNoFixedSetOne {n : } :
simp only [succ_eq_add_one, ne_eq, ← hf]
rw [f.2.1]
let f' := f.1 ∘ Fin.succ ∘ Fin.succ
have hf' (i : Fin (2 * n)) : f' i ≠ 0 := by
have hf' (i : Fin n) : f' i ≠ 0 := by
simp only [succ_eq_add_one, mul_eq, ne_eq, Function.comp_apply, f']
simp only [← hf1, succ_eq_add_one, ne_eq]
by_contra hn
have hn' := Function.Involutive.injective f.2.1 hn
simp [Fin.ext_iff] at hn'
let f'' := fun i => (f' i).pred (hf' i)
have hf'' (i : Fin (2 * n)) : f'' i ≠ 0 := by
have hf'' (i : Fin n) : f'' i ≠ 0 := by
simp only [mul_eq, ne_eq, f'']
rw [@Fin.pred_eq_iff_eq_succ]
simp only [mul_eq, succ_eq_add_one, ne_eq, Function.comp_apply, Fin.succ_zero_eq_one, f']
@ -420,7 +436,7 @@ def involutionNoFixedSetOne {n : } :
rw [Fin.pred_eq_iff_eq_succ, Fin.pred_eq_iff_eq_succ]
exact f.2.2.1 i.succ.succ
invFun f := by
let f' := fun (i : Fin (2 * n.succ))=>
let f' := fun (i : Fin n.succ.succ)=>
match i with
| ⟨0, h⟩ => 1
| ⟨1, h⟩ => 0
@ -441,7 +457,7 @@ def involutionNoFixedSetOne {n : } :
· rename_i h
rename_i x r
simp_all only [succ_eq_add_one, Fin.ext_iff, Fin.val_succ, add_left_inj]
have hfn {a b : } {ha : a < 2 * n} {hb : b < 2 * n}
have hfn {a b : } {ha : a < n} {hb : b < n}
(hab : ↑(f.1 ⟨a, ha⟩) = b) : ↑(f.1 ⟨b, hb⟩) = a := by
have ht : f.1 ⟨a, ha⟩ = ⟨b, hb⟩ := by
simp [hab, Fin.ext_iff]
@ -511,26 +527,33 @@ def involutionNoFixedSetOne {n : } :
apply congrArg
simp_all [Fin.ext_iff]
def involutionNoFixedZeroSetEquiv {n : } (k : Fin (2 * n + 1)) :
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f ∧
/-- Fixed point involutions of `Fin n.succ.succ` for fixed `f 0 = k.succ` are
equivalent to fixed point involutions of `Fin n`. -/
def involutionNoFixedZeroSetEquiv {n : } (k : Fin n.succ) :
{f : Fin n.succ.succ → Fin n.succ.succ // Function.Involutive f ∧
(∀ i, f i ≠ i) ∧ f 0 = k.succ}
≃ {f : Fin (2 * n) → Fin (2 * n) // Function.Involutive f ∧ (∀ i, f i ≠ i)} := by
≃ {f : Fin n → Fin n // Function.Involutive f ∧ (∀ i, f i ≠ i)} := by
refine Equiv.trans (involutionNoFixedZeroSetEquivSetOne k) involutionNoFixedSetOne
/-- The type of fixed point free involutions of `Fin n.succ.succ` is equivalent to the sum
of `Fin n.succ` copies of fixed point involutions of `Fin n`. -/
def involutionNoFixedEquivSumSame {n : } :
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f ∧ (∀ i, f i ≠ i)}
≃ Σ (_ : Fin (2 * n + 1)),
{f : Fin (2 * n) → Fin (2 * n) // Function.Involutive f ∧ (∀ i, f i ≠ i)} := by
{f : Fin n.succ.succ → Fin n.succ.succ // Function.Involutive f ∧ (∀ i, f i ≠ i)}
≃ Σ (_ : Fin n.succ),
{f : Fin n → Fin n // Function.Involutive f ∧ (∀ i, f i ≠ i)} := by
refine Equiv.trans involutionNoFixedEquivSum ?_
refine Equiv.sigmaCongrRight involutionNoFixedZeroSetEquiv
/-- Ever fixed-point free involutions of `Fin n.succ.succ` can be decomponsed into a
element of `Fin n.succ` (where `0` is sent) and a fixed-point free involution of
`Fin n`. -/
def involutionNoFixedZeroEquivProd {n : } :
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f ∧ (∀ i, f i ≠ i)}
≃ Fin (2 * n + 1) ×
{f : Fin (2 * n) → Fin (2 * n) // Function.Involutive f ∧ (∀ i, f i ≠ i)} := by
{f : Fin n.succ.succ → Fin n.succ.succ // Function.Involutive f ∧ (∀ i, f i ≠ i)}
≃ Fin n.succ ×
{f : Fin n → Fin n // Function.Involutive f ∧ (∀ i, f i ≠ i)} := by
refine Equiv.trans involutionNoFixedEquivSumSame ?_
exact Equiv.sigmaEquivProd (Fin (2 * n + 1))
{ f // Function.Involutive f ∧ ∀ (i : Fin (2 * n)), f i ≠ i}
exact Equiv.sigmaEquivProd (Fin n.succ)
{ f // Function.Involutive f ∧ ∀ (i : Fin n), f i ≠ i}
/-!
@ -538,6 +561,7 @@ def involutionNoFixedZeroEquivProd {n : } :
-/
/-- The type of fixed-point free involutions of `Fin n` is finite. -/
instance {n : } : Fintype { f // Function.Involutive f ∧ ∀ (i : Fin n), f i ≠ i } := by
haveI : DecidablePred fun x => Function.Involutive x :=
fun f => Fintype.decidableForallFintype (α := Fin n)
@ -547,22 +571,31 @@ instance {n : } : Fintype { f // Function.Involutive f ∧ ∀ (i : Fin n), f
lemma involutionNoFixed_card_succ {n : } :
Fintype.card
{f : Fin (2 * n.succ) → Fin (2 * n.succ) // Function.Involutive f ∧ (∀ i, f i ≠ i)}
= (2 * n + 1) *
Fintype.card {f : Fin (2 * n) → Fin (2 * n) // Function.Involutive f ∧ (∀ i, f i ≠ i)} := by
{f : Fin n.succ.succ → Fin n.succ.succ // Function.Involutive f ∧ (∀ i, f i ≠ i)}
= n.succ *
Fintype.card {f : Fin n → Fin n // Function.Involutive f ∧ (∀ i, f i ≠ i)} := by
rw [Fintype.card_congr (involutionNoFixedZeroEquivProd), Fintype.card_prod]
congr
exact Fintype.card_fin (2 * n + 1)
exact Fintype.card_fin n.succ
lemma involutionNoFixed_card_mul_two : (n : ) →
Fintype.card {f : Fin (2 * n) → Fin (2 * n) // Function.Involutive f ∧ (∀ i, f i ≠ i)}
= (2 * n - 1)‼
| 0 => rfl
| Nat.succ n => by
rw [involutionNoFixed_card_succ]
rw [involutionNoFixed_card_mul_two n]
erw [involutionNoFixed_card_succ]
erw [involutionNoFixed_card_mul_two n]
exact Eq.symm (Nat.doubleFactorial_add_one (Nat.mul 2 n))
lemma involutionNoFixed_card_mul_two_plus_one : (n : ) →
Fintype.card {f : Fin (2 * n + 1) → Fin (2 * n + 1) // Function.Involutive f ∧ (∀ i, f i ≠ i)}
= 0
| 0 => rfl
| Nat.succ n => by
erw [involutionNoFixed_card_succ]
erw [involutionNoFixed_card_mul_two_plus_one n]
exact rfl
lemma involutionNoFixed_card_even : (n : ) → (he : Even n) →
Fintype.card {f : Fin n → Fin n // Function.Involutive f ∧ (∀ i, f i ≠ i)} = (n - 1)‼ := by
intro n he
@ -571,4 +604,11 @@ lemma involutionNoFixed_card_even : (n : ) → (he : Even n) →
subst hr'
exact involutionNoFixed_card_mul_two r
lemma involutionNoFixed_card_odd : (n : ) → (ho : Odd n) →
Fintype.card {f : Fin n → Fin n // Function.Involutive f ∧ (∀ i, f i ≠ i)} = 0 := by
intro n ho
obtain ⟨r, hr⟩ := ho
subst hr
exact involutionNoFixed_card_mul_two_plus_one r
end HepLean.Fin