feat: Universality properties

This commit is contained in:
jstoobysmith 2025-02-06 12:38:05 +00:00
parent 2614e0bd92
commit 83b1a2c87a
5 changed files with 137 additions and 14 deletions

View file

@ -41,13 +41,7 @@ def fieldOpIdealSet : Set (FieldOpFreeAlgebra 𝓕) :=
- `[ofCrAnOpF φa, ofCrAnOpF φa']ₛca` for `φa` and `φa'` annihilation operators. I.e two
annihilation operators always super-commute.
- `[ofCrAnOpF φ, ofCrAnOpF φ']ₛca` for `φ` and `φ'` field operators with different statistics.
I.e. Fermions super-commute with bosons.
The algebra `𝓕.FieldOpAlgebra` satisfies the following universal property. For any
algebra `A` (e.g. the operator algebra of the theory) with a map `f : 𝓕.CrAnFieldOp → A` (e.g.
the inclusion of the creation and annihilation parts of field operators into the operator algebra)
such that the image of `f` obey the relations above, there exists a unique algebra map
`g : 𝓕.FieldOpAlgebra → A` through which `f` factors. -/
I.e. Fermions super-commute with bosons. -/
abbrev FieldOpAlgebra : Type := (TwoSidedIdeal.span 𝓕.fieldOpIdealSet).ringCon.Quotient
namespace FieldOpAlgebra
@ -61,6 +55,18 @@ lemma equiv_iff_sub_mem_ideal (x y : FieldOpFreeAlgebra 𝓕) :
rw [← TwoSidedIdeal.rel_iff]
rfl
lemma equiv_iff_exists_add (x y : FieldOpFreeAlgebra 𝓕) :
x ≈ y ↔ ∃ a, x = y + a ∧ a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet := by
apply Iff.intro
· intro h
rw [equiv_iff_sub_mem_ideal] at h
use x - y
simp [h]
· intro h
obtain ⟨a, rfl, ha⟩ := h
rw [equiv_iff_sub_mem_ideal]
simp [ha]
/-- The projection of `FieldOpFreeAlgebra` down to `FieldOpAlgebra` as an algebra map. -/
def ι : FieldOpFreeAlgebra 𝓕 →ₐ[] FieldOpAlgebra 𝓕 where
toFun := (TwoSidedIdeal.span 𝓕.fieldOpIdealSet).ringCon.mk'

View file

@ -0,0 +1,99 @@
/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.FieldOpAlgebra.Basic
/-!
# Universality properties of FieldOpAlgebra
-/
namespace FieldSpecification
open FieldOpFreeAlgebra
open HepLean.List
open FieldStatistic
namespace FieldOpAlgebra
variable {𝓕 : FieldSpecification}
/-- For a field specification, `𝓕`, given an algebra `A` and a function `f : 𝓕.CrAnFieldOp → A`
such that the lift of `f` to `FreeAlgebra.lift f : FreeAlgebra 𝓕.CrAnFieldOp → A` is
zero on the ideal defining `𝓕.FieldOpAlgebra`, the corresponding map `𝓕.FieldOpAlgebra → A`.
-/
def universalLiftMap {A : Type} [Semiring A] [Algebra A] (f : 𝓕.CrAnFieldOp → A)
(h1 : ∀ a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet, FreeAlgebra.lift f a = 0):
FieldOpAlgebra 𝓕 → A :=
Quotient.lift (FreeAlgebra.lift f) (by
intro a b h
rw [equiv_iff_exists_add] at h
obtain ⟨a, rfl, ha⟩ := h
simp
rw [h1 a ha]
simp)
@[simp]
lemma universalLiftMap_ι {A : Type} [Semiring A] [Algebra A] (f : 𝓕.CrAnFieldOp → A)
(h1 : ∀ a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet, FreeAlgebra.lift f a = 0) :
universalLiftMap f h1 (ι a) = FreeAlgebra.lift f a := by rfl
/-- For a field specification, `𝓕`, given an algebra `A` and a function `f : 𝓕.CrAnFieldOp → A`
such that the lift of `f` to `FreeAlgebra.lift f : FreeAlgebra 𝓕.CrAnFieldOp → A` is
zero on the ideal defining `𝓕.FieldOpAlgebra`, the corresponding algebra map
`𝓕.FieldOpAlgebra → A`.
-/
def universalLift {A : Type} [Semiring A] [Algebra A] (f : 𝓕.CrAnFieldOp → A)
(h1 : ∀ a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet, FreeAlgebra.lift f a = 0) :
FieldOpAlgebra 𝓕 →ₐ[] A where
toFun := universalLiftMap f h1
map_one' := by
rw [show 1 = ι (𝓕 := 𝓕) 1 from rfl, universalLiftMap_ι]
simp
map_mul' x y := by
obtain ⟨x, rfl⟩ := ι_surjective x
obtain ⟨y, rfl⟩ := ι_surjective y
simp [← map_mul]
map_zero' := by
simp only
rw [show 0 = ι (𝓕 := 𝓕) 0 from rfl, universalLiftMap_ι]
simp
map_add' x y := by
obtain ⟨x, rfl⟩ := ι_surjective x
obtain ⟨y, rfl⟩ := ι_surjective y
simp [← map_add]
commutes' r := by
simp only
rw [Algebra.algebraMap_eq_smul_one r]
rw [show r • 1 = ι (𝓕 := 𝓕) (r • 1) from rfl, universalLiftMap_ι]
simp only [map_smul, map_one]
exact Eq.symm (Algebra.algebraMap_eq_smul_one r)
@[simp]
lemma universalLift_ι {A : Type} [Semiring A] [Algebra A] (f : 𝓕.CrAnFieldOp → A)
(h1 : ∀ a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet, FreeAlgebra.lift f a = 0) :
universalLift f h1 (ι a) = FreeAlgebra.lift f a := by rfl
/--
For a field specification, `𝓕`, the algebra `𝓕.FieldOpAlgebra` satifies the following universal
property. Let `f : 𝓕.CrAnFieldOp → A` be a function and `g : 𝓕.FieldOpFreeAlgebra →ₐ[] A`
the universal lift of that function associated with the free algebra `𝓕.FieldOpFreeAlgebra`.
If `g` is zero on the ideal defining `𝓕.FieldOpAlgebra`, then there is a unique
algebra map `g' : FieldOpAlgebra 𝓕 →ₐ[] A` such that `g' ∘ ι = g`.
-/
lemma universality {A : Type} [Semiring A] [Algebra A] (f : 𝓕.CrAnFieldOp → A)
(h1 : ∀ a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet, FreeAlgebra.lift f a = 0) :
∃! g : FieldOpAlgebra 𝓕 →ₐ[] A, g ∘ ι = FreeAlgebra.lift f := by
use universalLift f h1
simp only
apply And.intro
· ext a
simp
· intro g hg
ext a
obtain ⟨a, rfl⟩ := ι_surjective a
simpa using congrFun hg a
end FieldOpAlgebra
end FieldSpecification

View file

@ -35,17 +35,12 @@ namespace FieldSpecification
variable {𝓕 : FieldSpecification}
/-- For a field specification `𝓕`, the algebra `𝓕.FieldOpFreeAlgebra` is
the free algebra generated by `𝓕.CrAnFieldOp`.
The algebra `𝓕.FieldOpFreeAlgebra` satisfies the universal property that for any other algebra
`A` (e.g. the operator algebra of the theory) with a map `f : 𝓕.CrAnFieldOp → A` (e.g.
the inclusion of the creation and annihilation parts of field operators into the
operator algebra) there is a unqiue algebra map `g : 𝓕.FieldOpFreeAlgebra → A`
through which `f` factors. -/
the free algebra generated by `𝓕.CrAnFieldOp`. -/
abbrev FieldOpFreeAlgebra (𝓕 : FieldSpecification) : Type := FreeAlgebra 𝓕.CrAnFieldOp
namespace FieldOpFreeAlgebra
remark naming_convention := "
For mathematicial objects defined in relation to `FieldOpFreeAlgebra` we will often postfix
their names with an `F` to indicate that they are related to the free algebra.
@ -57,6 +52,25 @@ remark naming_convention := "
def ofCrAnOpF (φ : 𝓕.CrAnFieldOp) : FieldOpFreeAlgebra 𝓕 :=
FreeAlgebra.ι φ
/--
The algebra `𝓕.FieldOpFreeAlgebra` satisfies the universal property that for any other algebra
`A` (e.g. the operator algebra of the theory) with a map `f : 𝓕.CrAnFieldOp → A` (e.g.
the inclusion of the creation and annihilation parts of field operators into the
operator algebra) there is a unqiue algebra map `g : 𝓕.FieldOpFreeAlgebra → A`
such that `g ∘ ofCrAnOpF = f`.
The unique `g` is given by `FreeAlgebra.lift f`.
-/
lemma universality {A : Type} [Semiring A] [Algebra A] (f : 𝓕.CrAnFieldOp → A) :
∃! g : FieldOpFreeAlgebra 𝓕 →ₐ[] A, g ∘ ofCrAnOpF = f := by
use FreeAlgebra.lift f
apply And.intro
· funext x
simp [ofCrAnOpF]
· intro g hg
ext x
simpa using congrFun hg x
/-- For a field specification `𝓕`, `ofCrAnListF φs` of `𝓕.FieldOpFreeAlgebra` formed by a
list `φs` of `𝓕.CrAnFieldOp`. For example for the list `[φ₁ᶜ, φ₂ᵃ, φ₃ᶜ]` we schematically
get `φ₁ᶜφ₂ᵃφ₃ᶜ`. The set of all `ofCrAnListF φs` forms a basis of `FieldOpFreeAlgebra 𝓕`. -/