feat: Universality properties
This commit is contained in:
parent
2614e0bd92
commit
83b1a2c87a
5 changed files with 137 additions and 14 deletions
|
@ -41,13 +41,7 @@ def fieldOpIdealSet : Set (FieldOpFreeAlgebra 𝓕) :=
|
|||
- `[ofCrAnOpF φa, ofCrAnOpF φa']ₛca` for `φa` and `φa'` annihilation operators. I.e two
|
||||
annihilation operators always super-commute.
|
||||
- `[ofCrAnOpF φ, ofCrAnOpF φ']ₛca` for `φ` and `φ'` field operators with different statistics.
|
||||
I.e. Fermions super-commute with bosons.
|
||||
|
||||
The algebra `𝓕.FieldOpAlgebra` satisfies the following universal property. For any
|
||||
algebra `A` (e.g. the operator algebra of the theory) with a map `f : 𝓕.CrAnFieldOp → A` (e.g.
|
||||
the inclusion of the creation and annihilation parts of field operators into the operator algebra)
|
||||
such that the image of `f` obey the relations above, there exists a unique algebra map
|
||||
`g : 𝓕.FieldOpAlgebra → A` through which `f` factors. -/
|
||||
I.e. Fermions super-commute with bosons. -/
|
||||
abbrev FieldOpAlgebra : Type := (TwoSidedIdeal.span 𝓕.fieldOpIdealSet).ringCon.Quotient
|
||||
|
||||
namespace FieldOpAlgebra
|
||||
|
@ -61,6 +55,18 @@ lemma equiv_iff_sub_mem_ideal (x y : FieldOpFreeAlgebra 𝓕) :
|
|||
rw [← TwoSidedIdeal.rel_iff]
|
||||
rfl
|
||||
|
||||
lemma equiv_iff_exists_add (x y : FieldOpFreeAlgebra 𝓕) :
|
||||
x ≈ y ↔ ∃ a, x = y + a ∧ a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet := by
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
rw [equiv_iff_sub_mem_ideal] at h
|
||||
use x - y
|
||||
simp [h]
|
||||
· intro h
|
||||
obtain ⟨a, rfl, ha⟩ := h
|
||||
rw [equiv_iff_sub_mem_ideal]
|
||||
simp [ha]
|
||||
|
||||
/-- The projection of `FieldOpFreeAlgebra` down to `FieldOpAlgebra` as an algebra map. -/
|
||||
def ι : FieldOpFreeAlgebra 𝓕 →ₐ[ℂ] FieldOpAlgebra 𝓕 where
|
||||
toFun := (TwoSidedIdeal.span 𝓕.fieldOpIdealSet).ringCon.mk'
|
||||
|
|
99
HepLean/PerturbationTheory/FieldOpAlgebra/Universality.lean
Normal file
99
HepLean/PerturbationTheory/FieldOpAlgebra/Universality.lean
Normal file
|
@ -0,0 +1,99 @@
|
|||
/-
|
||||
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.FieldOpAlgebra.Basic
|
||||
/-!
|
||||
|
||||
# Universality properties of FieldOpAlgebra
|
||||
|
||||
-/
|
||||
|
||||
namespace FieldSpecification
|
||||
open FieldOpFreeAlgebra
|
||||
open HepLean.List
|
||||
open FieldStatistic
|
||||
|
||||
namespace FieldOpAlgebra
|
||||
variable {𝓕 : FieldSpecification}
|
||||
|
||||
/-- For a field specification, `𝓕`, given an algebra `A` and a function `f : 𝓕.CrAnFieldOp → A`
|
||||
such that the lift of `f` to `FreeAlgebra.lift ℂ f : FreeAlgebra ℂ 𝓕.CrAnFieldOp → A` is
|
||||
zero on the ideal defining `𝓕.FieldOpAlgebra`, the corresponding map `𝓕.FieldOpAlgebra → A`.
|
||||
-/
|
||||
def universalLiftMap {A : Type} [Semiring A] [Algebra ℂ A] (f : 𝓕.CrAnFieldOp → A)
|
||||
(h1 : ∀ a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet, FreeAlgebra.lift ℂ f a = 0):
|
||||
FieldOpAlgebra 𝓕 → A :=
|
||||
Quotient.lift (FreeAlgebra.lift ℂ f) (by
|
||||
intro a b h
|
||||
rw [equiv_iff_exists_add] at h
|
||||
obtain ⟨a, rfl, ha⟩ := h
|
||||
simp
|
||||
rw [h1 a ha]
|
||||
simp)
|
||||
|
||||
@[simp]
|
||||
lemma universalLiftMap_ι {A : Type} [Semiring A] [Algebra ℂ A] (f : 𝓕.CrAnFieldOp → A)
|
||||
(h1 : ∀ a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet, FreeAlgebra.lift ℂ f a = 0) :
|
||||
universalLiftMap f h1 (ι a) = FreeAlgebra.lift ℂ f a := by rfl
|
||||
|
||||
|
||||
/-- For a field specification, `𝓕`, given an algebra `A` and a function `f : 𝓕.CrAnFieldOp → A`
|
||||
such that the lift of `f` to `FreeAlgebra.lift ℂ f : FreeAlgebra ℂ 𝓕.CrAnFieldOp → A` is
|
||||
zero on the ideal defining `𝓕.FieldOpAlgebra`, the corresponding algebra map
|
||||
`𝓕.FieldOpAlgebra → A`.
|
||||
-/
|
||||
def universalLift {A : Type} [Semiring A] [Algebra ℂ A] (f : 𝓕.CrAnFieldOp → A)
|
||||
(h1 : ∀ a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet, FreeAlgebra.lift ℂ f a = 0) :
|
||||
FieldOpAlgebra 𝓕 →ₐ[ℂ] A where
|
||||
toFun := universalLiftMap f h1
|
||||
map_one' := by
|
||||
rw [show 1 = ι (𝓕 := 𝓕) 1 from rfl, universalLiftMap_ι]
|
||||
simp
|
||||
map_mul' x y := by
|
||||
obtain ⟨x, rfl⟩ := ι_surjective x
|
||||
obtain ⟨y, rfl⟩ := ι_surjective y
|
||||
simp [← map_mul]
|
||||
map_zero' := by
|
||||
simp only
|
||||
rw [show 0 = ι (𝓕 := 𝓕) 0 from rfl, universalLiftMap_ι]
|
||||
simp
|
||||
map_add' x y := by
|
||||
obtain ⟨x, rfl⟩ := ι_surjective x
|
||||
obtain ⟨y, rfl⟩ := ι_surjective y
|
||||
simp [← map_add]
|
||||
commutes' r := by
|
||||
simp only
|
||||
rw [Algebra.algebraMap_eq_smul_one r]
|
||||
rw [show r • 1 = ι (𝓕 := 𝓕) (r • 1) from rfl, universalLiftMap_ι]
|
||||
simp only [map_smul, map_one]
|
||||
exact Eq.symm (Algebra.algebraMap_eq_smul_one r)
|
||||
|
||||
@[simp]
|
||||
lemma universalLift_ι {A : Type} [Semiring A] [Algebra ℂ A] (f : 𝓕.CrAnFieldOp → A)
|
||||
(h1 : ∀ a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet, FreeAlgebra.lift ℂ f a = 0) :
|
||||
universalLift f h1 (ι a) = FreeAlgebra.lift ℂ f a := by rfl
|
||||
|
||||
/--
|
||||
For a field specification, `𝓕`, the algebra `𝓕.FieldOpAlgebra` satifies the following universal
|
||||
property. Let `f : 𝓕.CrAnFieldOp → A` be a function and `g : 𝓕.FieldOpFreeAlgebra →ₐ[ℂ] A`
|
||||
the universal lift of that function associated with the free algebra `𝓕.FieldOpFreeAlgebra`.
|
||||
If `g` is zero on the ideal defining `𝓕.FieldOpAlgebra`, then there is a unique
|
||||
algebra map `g' : FieldOpAlgebra 𝓕 →ₐ[ℂ] A` such that `g' ∘ ι = g`.
|
||||
-/
|
||||
lemma universality {A : Type} [Semiring A] [Algebra ℂ A] (f : 𝓕.CrAnFieldOp → A)
|
||||
(h1 : ∀ a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet, FreeAlgebra.lift ℂ f a = 0) :
|
||||
∃! g : FieldOpAlgebra 𝓕 →ₐ[ℂ] A, g ∘ ι = FreeAlgebra.lift ℂ f := by
|
||||
use universalLift f h1
|
||||
simp only
|
||||
apply And.intro
|
||||
· ext a
|
||||
simp
|
||||
· intro g hg
|
||||
ext a
|
||||
obtain ⟨a, rfl⟩ := ι_surjective a
|
||||
simpa using congrFun hg a
|
||||
|
||||
end FieldOpAlgebra
|
||||
end FieldSpecification
|
|
@ -35,17 +35,12 @@ namespace FieldSpecification
|
|||
variable {𝓕 : FieldSpecification}
|
||||
|
||||
/-- For a field specification `𝓕`, the algebra `𝓕.FieldOpFreeAlgebra` is
|
||||
the free algebra generated by `𝓕.CrAnFieldOp`.
|
||||
|
||||
The algebra `𝓕.FieldOpFreeAlgebra` satisfies the universal property that for any other algebra
|
||||
`A` (e.g. the operator algebra of the theory) with a map `f : 𝓕.CrAnFieldOp → A` (e.g.
|
||||
the inclusion of the creation and annihilation parts of field operators into the
|
||||
operator algebra) there is a unqiue algebra map `g : 𝓕.FieldOpFreeAlgebra → A`
|
||||
through which `f` factors. -/
|
||||
the free algebra generated by `𝓕.CrAnFieldOp`. -/
|
||||
abbrev FieldOpFreeAlgebra (𝓕 : FieldSpecification) : Type := FreeAlgebra ℂ 𝓕.CrAnFieldOp
|
||||
|
||||
namespace FieldOpFreeAlgebra
|
||||
|
||||
|
||||
remark naming_convention := "
|
||||
For mathematicial objects defined in relation to `FieldOpFreeAlgebra` we will often postfix
|
||||
their names with an `F` to indicate that they are related to the free algebra.
|
||||
|
@ -57,6 +52,25 @@ remark naming_convention := "
|
|||
def ofCrAnOpF (φ : 𝓕.CrAnFieldOp) : FieldOpFreeAlgebra 𝓕 :=
|
||||
FreeAlgebra.ι ℂ φ
|
||||
|
||||
/--
|
||||
The algebra `𝓕.FieldOpFreeAlgebra` satisfies the universal property that for any other algebra
|
||||
`A` (e.g. the operator algebra of the theory) with a map `f : 𝓕.CrAnFieldOp → A` (e.g.
|
||||
the inclusion of the creation and annihilation parts of field operators into the
|
||||
operator algebra) there is a unqiue algebra map `g : 𝓕.FieldOpFreeAlgebra → A`
|
||||
such that `g ∘ ofCrAnOpF = f`.
|
||||
|
||||
The unique `g` is given by `FreeAlgebra.lift ℂ f`.
|
||||
-/
|
||||
lemma universality {A : Type} [Semiring A] [Algebra ℂ A] (f : 𝓕.CrAnFieldOp → A) :
|
||||
∃! g : FieldOpFreeAlgebra 𝓕 →ₐ[ℂ] A, g ∘ ofCrAnOpF = f := by
|
||||
use FreeAlgebra.lift ℂ f
|
||||
apply And.intro
|
||||
· funext x
|
||||
simp [ofCrAnOpF]
|
||||
· intro g hg
|
||||
ext x
|
||||
simpa using congrFun hg x
|
||||
|
||||
/-- For a field specification `𝓕`, `ofCrAnListF φs` of `𝓕.FieldOpFreeAlgebra` formed by a
|
||||
list `φs` of `𝓕.CrAnFieldOp`. For example for the list `[φ₁ᶜ, φ₂ᵃ, φ₃ᶜ]` we schematically
|
||||
get `φ₁ᶜφ₂ᵃφ₃ᶜ`. The set of all `ofCrAnListF φs` forms a basis of `FieldOpFreeAlgebra 𝓕`. -/
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue