refactor: Pauli matrices

This commit is contained in:
jstoobysmith 2024-10-28 15:29:58 +00:00
parent e761463e8f
commit 83ff8f5358
2 changed files with 60 additions and 141 deletions

View file

@ -3,8 +3,13 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE. Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith Authors: Joseph Tooby-Smith
-/ -/
import HepLean.Tensors.ComplexLorentz.PauliLower import HepLean.Tensors.ComplexLorentz.PauliMatrices.Basic
import HepLean.Tensors.Tree.NodeIdentities.ProdContr import HepLean.Tensors.Tree.NodeIdentities.ProdContr
import HepLean.Tensors.Tree.NodeIdentities.PermContr
import HepLean.Tensors.Tree.NodeIdentities.PermProd
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
import HepLean.Tensors.Tree.NodeIdentities.ContrContr
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
import HepLean.Tensors.Tree.NodeIdentities.Congr import HepLean.Tensors.Tree.NodeIdentities.Congr
import HepLean.Tensors.Tree.NodeIdentities.ProdAssoc import HepLean.Tensors.Tree.NodeIdentities.ProdAssoc
/-! /-!
@ -28,145 +33,59 @@ noncomputable section
namespace complexLorentzTensor namespace complexLorentzTensor
open Lorentz open Lorentz
/-!
## Definitions
-/
/-- A bispinor `pᵃᵃ` created from a lorentz vector `p^μ`. -/ /-- A bispinor `pᵃᵃ` created from a lorentz vector `p^μ`. -/
def contrBispinorUp (p : complexContr) := def contrBispinorUp (p : complexContr) :=
{p | μ ⊗ pauliCo | μ α β}ᵀ.tensor {pauliCo | μ α β ⊗ p | μ}ᵀ.tensor
lemma tensorNode_contrBispinorUp (p : complexContr) :
(tensorNode (contrBispinorUp p)).tensor = {p | μ ⊗ pauliCo | μ α β}ᵀ.tensor := by
rw [contrBispinorUp, tensorNode_tensor]
/-- An up-bispinor is equal to `pauliCo | μ α β ⊗ p | μ`-/
lemma contrBispinorUp_eq_pauliCo_self (p : complexContr) :
{contrBispinorUp p | α β = pauliCo | μ α β ⊗ p | μ}ᵀ := by
rw [tensorNode_contrBispinorUp]
conv_lhs =>
rw [contr_tensor_eq <| prod_comm _ _ _ _]
rw [perm_contr]
rw [perm_tensor_eq <| contr_swap _ _]
rw [perm_perm]
apply perm_congr
· apply OverColor.Hom.ext
ext x
match x with
| (0 : Fin 2) => rfl
| (1 : Fin 2) => rfl
· rfl
set_option maxRecDepth 2000 in
lemma altRightMetric_contr_contrBispinorUp_assoc (p : complexContr) :
{Fermion.altRightMetric | β β' ⊗ contrBispinorUp p | α β =
Fermion.altRightMetric | β β' ⊗ pauliCo | μ α β ⊗ p | μ}ᵀ := by
conv_lhs =>
rw [contr_tensor_eq <| prod_tensor_eq_snd <| contrBispinorUp_eq_pauliCo_self _]
rw [contr_tensor_eq <| prod_perm_right _ _ _ _]
rw [perm_contr]
rw [perm_tensor_eq <| contr_tensor_eq <| prod_contr _ _ _]
rw [perm_tensor_eq <| perm_contr _ _]
rw [perm_perm]
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_assoc _ _ _ _ _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr _ _]
rw [perm_tensor_eq <| perm_contr _ _]
rw [perm_perm]
conv_rhs =>
rw [perm_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
rw [perm_tensor_eq <| perm_contr _ _]
rw [perm_perm]
erw [perm_tensor_eq <| contr_tensor_eq <| perm_contr _ _]
rw [perm_tensor_eq <| perm_contr _ _]
rw [perm_perm]
rw [perm_tensor_eq <| contr_contr _ _ _]
rw [perm_perm]
apply perm_congr (_) rfl
· apply OverColor.Hom.fin_ext
intro i
fin_cases i
exact rfl
exact rfl
/-- A bispinor `pₐₐ` created from a lorentz vector `p^μ`. -/ /-- A bispinor `pₐₐ` created from a lorentz vector `p^μ`. -/
def contrBispinorDown (p : complexContr) := def contrBispinorDown (p : complexContr) :=
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗ {Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
(contrBispinorUp p) | α β}ᵀ.tensor contrBispinorUp p | α β}ᵀ.tensor
/-- Expands the tensor node of `contrBispinorDown` into a tensor tree based on /-- A bispinor `pᵃᵃ` created from a lorentz vector `p_μ`. -/
`contrBispinorUp`. -/ def coBispinorUp (p : complexCo) :=
{pauliContr | μ α β ⊗ p | μ}ᵀ.tensor
/-- A bispinor `pₐₐ` created from a lorentz vector `p_μ`. -/
def coBispinorDown (p : complexCo) :=
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
coBispinorUp p | α β}ᵀ.tensor
/-!
## Tensor nodes
-/
/-- The definitional tensor node relation for `contrBispinorUp`. -/
lemma tensorNode_contrBispinorUp (p : complexContr) :
{contrBispinorUp p | α β}ᵀ.tensor = {pauliCo | μ α β ⊗ p | μ}ᵀ.tensor := by
rw [contrBispinorUp, tensorNode_tensor]
/-- The definitional tensor node relation for `contrBispinorDown`. -/
lemma tensorNode_contrBispinorDown (p : complexContr) : lemma tensorNode_contrBispinorDown (p : complexContr) :
{contrBispinorDown p | α β}ᵀ.tensor = {Fermion.altLeftMetric | α α' ⊗ {contrBispinorDown p | α β}ᵀ.tensor =
Fermion.altRightMetric | β β' ⊗ (contrBispinorUp p) | α β}ᵀ.tensor := by {Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β'
⊗ contrBispinorUp p | α β}ᵀ.tensor := by
rw [contrBispinorDown, tensorNode_tensor] rw [contrBispinorDown, tensorNode_tensor]
set_option maxRecDepth 10000 in /-- The definitional tensor node relation for `coBispinorUp`. -/
lemma contrBispinorDown_eq_metric_contr_contrBispinorUp (p : complexContr) : lemma tensorNode_coBispinorUp (p : complexCo) :
{contrBispinorDown p | α' β' = Fermion.altLeftMetric | α α' ⊗ {coBispinorUp p | α β}ᵀ.tensor = {pauliContr | μ α β ⊗ p | μ}ᵀ.tensor := by
(Fermion.altRightMetric | β β' ⊗ contrBispinorUp p | α β)}ᵀ := by rw [coBispinorUp, tensorNode_tensor]
rw [tensorNode_contrBispinorDown]
conv_lhs =>
rw [contr_tensor_eq <| contr_tensor_eq <| prod_assoc' _ _ _ _ _ _]
rw [contr_tensor_eq <| perm_contr _ _]
rw [perm_contr]
rw [perm_tensor_eq <| contr_contr _ _ _]
rw [perm_perm]
conv_rhs =>
rw [perm_tensor_eq <| contr_tensor_eq <| prod_contr _ _ _ ]
rw [perm_tensor_eq <| perm_contr _ _]
rw [perm_perm]
apply perm_congr
· apply OverColor.Hom.ext
ext x
match x with
| (0 : Fin 2) => rfl
| (1 : Fin 2) => rfl
· rfl
/- TODO: Remove maxHeartbeats from this result. -/ /-- The definitional tensor node relation for `coBispinorDown`. -/
set_option maxHeartbeats 400000 in lemma tensorNode_coBispinorDown (p : complexCo) :
set_option maxRecDepth 2000 in {coBispinorDown p | α β}ᵀ.tensor =
lemma contrBispinorDown_eq_contr_with_self (p : complexContr) : {Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β'
{contrBispinorDown p | α' β' = (Fermion.altLeftMetric | α α' ⊗ ⊗ coBispinorUp p | α β}ᵀ.tensor := by
(Fermion.altRightMetric | β β' ⊗ pauliCo | μ α β)) ⊗ p | μ}ᵀ := by rw [coBispinorDown, tensorNode_tensor]
rw [contrBispinorDown_eq_metric_contr_contrBispinorUp]
conv_lhs =>
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_snd <| altRightMetric_contr_contrBispinorUp_assoc _]
rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_right _ _ _ _]
rw [perm_tensor_eq <| perm_contr _ _ ]
rw [perm_perm]
rw [perm_tensor_eq <| contr_tensor_eq <| prod_contr _ _ _]
rw [perm_tensor_eq <| perm_contr _ _]
rw [perm_perm]
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <|
prod_assoc _ _ _ _ _ _]
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr _ _]
rw [perm_tensor_eq <| perm_contr _ _]
rw [perm_perm]
conv =>
rhs
rw [perm_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
rw [perm_tensor_eq <| perm_contr _ _]
rw [perm_perm]
erw [perm_tensor_eq <| contr_tensor_eq <| perm_contr _ _]
rw [perm_tensor_eq <| perm_contr _ _]
rw [perm_perm]
rw [perm_tensor_eq <| contr_contr _ _ _]
rw [perm_perm]
apply congrArg
apply congrFun
apply congrArg
apply OverColor.Hom.fin_ext
intro i
fin_cases i
· exact rfl
· exact rfl
/-- Expansion of a `contrBispinorDown` into the original contravariant tensor nested
between pauli matrices and metrics. -/
lemma contrBispinorDown_eq_metric_mul_self_mul_pauli (p : complexContr) :
{contrBispinorDown p | α β}ᵀ.tensor = {Fermion.altLeftMetric | α α' ⊗
Fermion.altRightMetric | β β' ⊗ (p | μ ⊗ pauliCo | μ α β)}ᵀ.tensor := by
conv =>
lhs
rw [tensorNode_contrBispinorDown]
rw [contr_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_snd <| tensorNode_contrBispinorUp p]
end complexLorentzTensor end complexLorentzTensor
end end

View file

@ -33,19 +33,19 @@ open Fermion
-/ -/
/- The Pauli matrices as `σ^μ^α^{dot β}`. -/ /- The Pauli matrices as the complex Lorentz tensor `σ^μ^α^{dot β}`. -/
def pauliContr := {PauliMatrix.asConsTensor | ν α β}ᵀ.tensor def pauliContr := {PauliMatrix.asConsTensor | ν α β}ᵀ.tensor
/-- The Pauli matrices as `σ_μ^α^{dot β}`. -/ /-- The Pauli matrices as the complex Lorentz tensor `σ_μ^α^{dot β}`. -/
def pauliCo := {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | ν α β}ᵀ.tensor def pauliCo := {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | ν α β}ᵀ.tensor
/-- The Pauli matrices as `σ_μ_α_{dot β}`. -/ /-- The Pauli matrices as the complex Lorentz tensor `σ_μ_α_{dot β}`. -/
def pauliCoDown := {Fermion.altLeftMetric | α α' ⊗ def pauliCoDown := {pauliCo | μ α β ⊗ Fermion.altLeftMetric | α α' ⊗
Fermion.altRightMetric | β β' ⊗ pauliCo | μ α β}ᵀ.tensor Fermion.altRightMetric | β β'}ᵀ.tensor
/-- The Pauli matrices as `σ^μ_α_{dot β}`. -/ /-- The Pauli matrices as the complex Lorentz tensor `σ^μ_α_{dot β}`. -/
def pauliContrDown := {Fermion.altLeftMetric | α α' ⊗ def pauliContrDown := {pauliContr | μ α β ⊗ Fermion.altLeftMetric | α α' ⊗
Fermion.altRightMetric | β β' ⊗ pauliContr | μ α β}ᵀ.tensor Fermion.altRightMetric | β β'}ᵀ.tensor
/-! /-!
@ -65,14 +65,14 @@ lemma tensorNode_pauliCo : {pauliCo | μ α β}ᵀ.tensor =
/-- The definitional tensor node relation for `pauliCoDown`. -/ /-- The definitional tensor node relation for `pauliCoDown`. -/
lemma tensorNode_pauliCoDown : {pauliCoDown | μ α β}ᵀ.tensor = lemma tensorNode_pauliCoDown : {pauliCoDown | μ α β}ᵀ.tensor =
{Fermion.altLeftMetric | α α' ⊗ {pauliCo | μ α β ⊗ Fermion.altLeftMetric | α α' ⊗
Fermion.altRightMetric | β β' ⊗ pauliCo | μ α β}ᵀ.tensor := by Fermion.altRightMetric | β β'}ᵀ.tensor := by
rfl rfl
/-- The definitional tensor node relation for `pauliContrDown`. -/ /-- The definitional tensor node relation for `pauliContrDown`. -/
lemma tensorNode_pauliContrDown : {pauliContrDown | μ α β}ᵀ.tensor = lemma tensorNode_pauliContrDown : {pauliContrDown | μ α β}ᵀ.tensor =
{Fermion.altLeftMetric | α α' ⊗ {pauliContr | μ α β ⊗ Fermion.altLeftMetric | α α' ⊗
Fermion.altRightMetric | β β' ⊗ pauliContr | μ α β}ᵀ.tensor := by Fermion.altRightMetric | β β'}ᵀ.tensor := by
rfl rfl
end complexLorentzTensor end complexLorentzTensor