refactor: Simp to simp only ...

This commit is contained in:
jstoobysmith 2024-10-19 09:19:29 +00:00
parent b2ac704d80
commit 855dc5146d
12 changed files with 257 additions and 192 deletions

View file

@ -31,44 +31,44 @@ def predAboveI (i x : Fin n.succ.succ) : Fin n.succ :=
· omega
· omega⟩
lemma predAboveI_self (i : Fin n.succ.succ) : predAboveI i i = ⟨i.val - 1, by omega⟩ := by
lemma predAboveI_self (i : Fin n.succ.succ) : predAboveI i i = ⟨i.val - 1, by omega⟩ := by
simp [predAboveI]
@[simp]
lemma predAboveI_succAbove (i : Fin n.succ.succ) (x : Fin n.succ) :
predAboveI i (Fin.succAbove i x) = x := by
simp [predAboveI, Fin.succAbove, Fin.ext_iff]
simp only [Nat.succ_eq_add_one, predAboveI, Fin.succAbove, Fin.val_fin_lt, Fin.ext_iff]
split_ifs
· rfl
· rename_i h1 h2
simp [Fin.lt_def] at h1 h2
simp only [Fin.lt_def, Fin.coe_castSucc, not_lt, Nat.succ_eq_add_one, Fin.val_succ] at h1 h2
omega
· rfl
lemma succsAbove_predAboveI {i x : Fin n.succ.succ} (h : i ≠ x) :
Fin.succAbove i (predAboveI i x) = x := by
simp [Fin.succAbove, predAboveI, Fin.ext_iff]
simp only [Fin.succAbove, predAboveI, Nat.succ_eq_add_one, Fin.val_fin_lt, Fin.ext_iff]
split_ifs
· rfl
· rename_i h1 h2
rw [Fin.lt_def] at h1 h2
simp
simp at h2
simp only [Fin.succ_mk, Nat.succ_eq_add_one, add_right_eq_self, one_ne_zero]
simp only [Fin.castSucc_mk, Fin.eta, Fin.val_fin_lt, not_lt] at h2
rw [Fin.le_def] at h2
omega
· rename_i h1 h2
simp at h1
simp only [not_lt] at h1
rw [Fin.le_def] at h1
rw [Fin.lt_def] at h2
simp at h2
simp only [Fin.castSucc_mk] at h2
omega
· rename_i h1 h2
simp
simp at h1
simp only [Fin.succ_mk, Nat.succ_eq_add_one]
simp only [not_lt] at h1
rw [Fin.le_def] at h1
omega
lemma predAboveI_eq_iff {i x : Fin n.succ.succ} (h : i ≠ x) (y : Fin n.succ) :
y = predAboveI i x ↔ i.succAbove y = x := by
y = predAboveI i x ↔ i.succAbove y = x := by
apply Iff.intro
· intro h
subst h
@ -83,19 +83,19 @@ lemma predAboveI_lt {i x : Fin n.succ.succ} (h : x.val < i.val) :
lemma predAboveI_ge {i x : Fin n.succ.succ} (h : i.val < x.val) :
predAboveI i x = ⟨x.val - 1, by omega⟩ := by
simp [predAboveI, h]
simp only [Nat.succ_eq_add_one, predAboveI, Fin.val_fin_lt, dite_eq_else, Fin.mk.injEq]
omega
lemma succAbove_succAbove_predAboveI (i : Fin n.succ.succ) (j : Fin n.succ) (x : Fin n) :
i.succAbove (j.succAbove x) =
(i.succAbove j).succAbove ((predAboveI (i.succAbove j) i).succAbove x) := by
by_cases h1 : j.castSucc < i
· have hx := Fin.succAbove_of_castSucc_lt _ _ h1
· have hx := Fin.succAbove_of_castSucc_lt _ _ h1
rw [hx]
rw [predAboveI_ge h1]
by_cases hx1 : x.castSucc < j
· rw [Fin.succAbove_of_castSucc_lt _ _ hx1]
rw [Fin.succAbove_of_castSucc_lt _ _]
· rw [Fin.succAbove_of_castSucc_lt _ _ hx1]
rw [Fin.succAbove_of_castSucc_lt _ _]
· nth_rewrite 2 [Fin.succAbove_of_castSucc_lt _ _]
· rw [Fin.succAbove_of_castSucc_lt _ _]
exact hx1
@ -103,7 +103,7 @@ lemma succAbove_succAbove_predAboveI (i : Fin n.succ.succ) (j : Fin n.succ) (x :
simp_all
omega
· exact Nat.lt_trans hx1 h1
· simp at hx1
· simp only [not_lt] at hx1
rw [Fin.le_def] at hx1
rw [Fin.lt_def] at h1
rw [Fin.succAbove_of_le_castSucc _ _ hx1]
@ -116,7 +116,7 @@ lemma succAbove_succAbove_predAboveI (i : Fin n.succ.succ) (j : Fin n.succ) (x :
· rw [Fin.lt_def] at hx2 ⊢
simp_all
omega
· simp at hx2
· simp only [Nat.succ_eq_add_one, not_lt] at hx2
rw [Fin.succAbove_of_le_castSucc _ _ hx2]
nth_rewrite 2 [Fin.succAbove_of_le_castSucc]
· rw [Fin.succAbove_of_le_castSucc]
@ -124,8 +124,8 @@ lemma succAbove_succAbove_predAboveI (i : Fin n.succ.succ) (j : Fin n.succ) (x :
exact Nat.le_succ_of_le hx1
· rw [Fin.le_def] at hx2 ⊢
simp_all
· simp at h1
have hx := Fin.succAbove_of_le_castSucc _ _ h1
· simp only [Nat.succ_eq_add_one, not_lt] at h1
have hx := Fin.succAbove_of_le_castSucc _ _ h1
rw [hx]
rw [predAboveI_lt (Nat.lt_add_one_of_le h1)]
by_cases hx1 : j ≤ x.castSucc
@ -141,7 +141,7 @@ lemma succAbove_succAbove_predAboveI (i : Fin n.succ.succ) (j : Fin n.succ) (x :
· rw [Fin.le_def] at hx1 h1 ⊢
simp_all
omega
· simp at hx1
· simp only [Nat.succ_eq_add_one, not_le] at hx1
rw [Fin.lt_def] at hx1
rw [Fin.le_def] at h1
rw [Fin.succAbove_of_castSucc_lt _ _ hx1]
@ -149,12 +149,12 @@ lemma succAbove_succAbove_predAboveI (i : Fin n.succ.succ) (j : Fin n.succ) (x :
· rw [Fin.succAbove_of_castSucc_lt _ _ hx2]
nth_rewrite 2 [Fin.succAbove_of_castSucc_lt _ _]
· rw [Fin.succAbove_of_castSucc_lt _ _]
rw [Fin.lt_def] at hx2 ⊢
rw [Fin.lt_def] at hx2 ⊢
simp_all
omega
· rw [Fin.lt_def] at hx2
· rw [Fin.lt_def] at hx2 ⊢
simp_all
· simp at hx2
· simp only [not_lt] at hx2
rw [Fin.succAbove_of_le_castSucc _ _ hx2]
nth_rewrite 2 [Fin.succAbove_of_le_castSucc]
· rw [Fin.succAbove_of_castSucc_lt]
@ -175,11 +175,12 @@ def finExtractOne {n : } (i : Fin n.succ) : Fin n.succ ≃ Fin 1 ⊕ Fin n :=
lemma finExtractOne_apply_eq {n : } (i : Fin n.succ) :
finExtractOne i i = Sum.inl 0 := by
simp [finExtractOne]
simp only [Nat.succ_eq_add_one, finExtractOne, Equiv.trans_apply, finCongr_apply,
Equiv.sumCongr_apply, Equiv.coe_trans, Equiv.sumComm_apply, Equiv.coe_refl, Fin.isValue]
have h1 : Fin.cast (finExtractOne.proof_1 i) i = Fin.castAdd ((n - ↑i)) ⟨i.1, lt_add_one i.1⟩ := by
simp [Fin.ext_iff]
rw [h1, finSumFinEquiv_symm_apply_castAdd]
simp
simp only [Nat.succ_eq_add_one, Sum.map_inl, Function.comp_apply, Fin.isValue]
have h2 : @Fin.mk (↑i + 1) ↑i (lt_add_one i.1) = Fin.natAdd i.val 1 := by
simp [Fin.ext_iff]
rw [h2, finSumFinEquiv_symm_apply_natAdd]
@ -245,12 +246,13 @@ lemma finExtractOne_symm_inl_apply {n : } (i : Fin n.succ) :
rfl
def finExtractOnPermHom (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ) :
Fin n.succ → Fin n.succ := fun x => predAboveI (σ i) (σ ((finExtractOne i).symm (Sum.inr x)))
Fin n.succ → Fin n.succ := fun x => predAboveI (σ i) (σ ((finExtractOne i).symm (Sum.inr x)))
lemma finExtractOnPermHom_inv (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ) :
(finExtractOnPermHom (σ i) σ.symm) ∘ (finExtractOnPermHom i σ) = id := by
(finExtractOnPermHom (σ i) σ.symm) ∘ (finExtractOnPermHom i σ) = id := by
funext x
simp [finExtractOnPermHom]
simp only [Nat.succ_eq_add_one, Function.comp_apply, finExtractOnPermHom, Equiv.symm_apply_apply,
finExtractOne_symm_inr_apply, id_eq]
by_cases h : σ (i.succAbove x) < σ i
· rw [predAboveI_lt h, Fin.succAbove_of_castSucc_lt]
· simp
@ -261,18 +263,18 @@ lemma finExtractOnPermHom_inv (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fi
have hn : σ i < σ (i.succAbove x) := by omega
rw [predAboveI_ge hn]
rw [Fin.succAbove_of_le_castSucc]
· simp
trans predAboveI i (σ.symm (σ (i.succAbove x)))
· simp only [Nat.succ_eq_add_one, Fin.succ_mk]
trans predAboveI i (σ.symm (σ (i.succAbove x)))
· congr
exact Nat.sub_add_cancel (Fin.lt_of_le_of_lt (Fin.zero_le (σ i)) hn)
simp
rw [Fin.le_def]
simp
simp only [Nat.succ_eq_add_one, Fin.castSucc_mk]
omega
def finExtractOnePerm (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ) :
Fin n.succ ≃ Fin n.succ where
toFun x := finExtractOnPermHom i σ x
toFun x := finExtractOnPermHom i σ x
invFun x := finExtractOnPermHom (σ i) σ.symm x
left_inv x := by
simpa using congrFun (finExtractOnPermHom_inv i σ) x
@ -290,7 +292,8 @@ def finExtractTwo {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
@[simp]
lemma finExtractTwo_apply_fst {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
finExtractTwo i j i = Sum.inl (Sum.inl 0) := by
simp [finExtractTwo]
simp only [Nat.succ_eq_add_one, finExtractTwo, Equiv.trans_apply, Equiv.sumCongr_apply,
Equiv.coe_refl, Fin.isValue]
simp [finExtractOne_apply_eq]
lemma finExtractTwo_symm_inr {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :