refactor: Simp to simp only ...
This commit is contained in:
parent
b2ac704d80
commit
855dc5146d
12 changed files with 257 additions and 192 deletions
|
@ -70,21 +70,22 @@ lemma perm_contr_cond {n : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n.succ.s
|
|||
c (Fin.succAbove ((Hom.toEquiv σ).symm i) ((Hom.toEquiv (extractOne i σ)).symm j)) =
|
||||
S.τ (c ((Hom.toEquiv σ).symm i)) := by
|
||||
have h1 := Hom.toEquiv_comp_apply σ
|
||||
simp at h1
|
||||
simp only [Nat.succ_eq_add_one, Functor.const_obj_obj, mk_hom] at h1
|
||||
rw [h1, h1]
|
||||
simp
|
||||
simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Equiv.apply_symm_apply]
|
||||
rw [← h]
|
||||
congr
|
||||
simp [HepLean.Fin.finExtractOnePerm, HepLean.Fin.finExtractOnPermHom]
|
||||
simp only [Nat.succ_eq_add_one, HepLean.Fin.finExtractOnePerm, HepLean.Fin.finExtractOnPermHom,
|
||||
HepLean.Fin.finExtractOne_symm_inr_apply, Equiv.symm_apply_apply, Equiv.coe_fn_symm_mk]
|
||||
erw [Equiv.apply_symm_apply]
|
||||
rw [HepLean.Fin.succsAbove_predAboveI]
|
||||
erw [Equiv.apply_symm_apply]
|
||||
simp
|
||||
simp only [Nat.succ_eq_add_one, ne_eq]
|
||||
erw [Equiv.apply_eq_iff_eq]
|
||||
exact (Fin.succAbove_ne i j).symm
|
||||
|
||||
/-- The isomorphism between the image of a map `Fin 1 ⊕ Fin 1 → S.C` contructed by `finExtractTwo`
|
||||
under `S.F.obj`, and an object in the image of `OverColor.Discrete.pairτ S.FDiscrete`. -/
|
||||
under `S.F.obj`, and an object in the image of `OverColor.Discrete.pairτ S.FDiscrete`. -/
|
||||
def contrFin1Fin1 {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
|
||||
S.F.obj (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) ≅
|
||||
|
@ -115,35 +116,54 @@ lemma contrFin1Fin1_inv_tmul {n : ℕ} (c : Fin n.succ.succ → S.C)
|
|||
PiTensorProduct.tprod S.k (fun k =>
|
||||
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FDiscrete.map
|
||||
(eqToHom (by simp [h]))).hom y) := by
|
||||
simp [contrFin1Fin1]
|
||||
simp only [Nat.succ_eq_add_one, contrFin1Fin1, Functor.comp_obj, Discrete.functor_obj_eq_as,
|
||||
Function.comp_apply, Iso.trans_symm, Iso.symm_symm_eq, Iso.trans_inv, tensorIso_inv,
|
||||
Iso.symm_inv, Functor.mapIso_hom, tensor_comp, MonoidalFunctor.μIso_hom, Category.assoc,
|
||||
LaxMonoidalFunctor.μ_natural, Functor.mapIso_inv, Action.comp_hom,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorHom_hom,
|
||||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, ModuleCat.coe_comp, Functor.id_obj, mk_hom,
|
||||
Fin.isValue]
|
||||
change (S.F.map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
((S.F.map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
||||
((S.F.μ (OverColor.mk fun x => c i) (OverColor.mk fun x => S.τ (c i))).hom
|
||||
((((OverColor.forgetLiftApp S.FDiscrete (c i)).inv.hom x) ⊗ₜ[S.k]
|
||||
((OverColor.forgetLiftApp S.FDiscrete (S.τ (c i))).inv.hom y))))) = _
|
||||
simp [OverColor.forgetLiftApp]
|
||||
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
forgetLiftApp, Action.mkIso_inv_hom, LinearEquiv.toModuleIso_inv, Fin.isValue]
|
||||
erw [OverColor.forgetLiftAppV_symm_apply, OverColor.forgetLiftAppV_symm_apply S.FDiscrete (S.τ (c i))]
|
||||
change ((OverColor.lift.obj S.FDiscrete).map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
change ((OverColor.lift.obj S.FDiscrete).map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
(((OverColor.lift.obj S.FDiscrete).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
||||
(((OverColor.lift.obj S.FDiscrete).μ (OverColor.mk fun x => c i) (OverColor.mk fun x => S.τ (c i))).hom
|
||||
(((PiTensorProduct.tprod S.k) fun x_1 => x) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun x => y))) = _
|
||||
rw [OverColor.lift.obj_μ_tprod_tmul S.FDiscrete]
|
||||
change ((OverColor.lift.obj S.FDiscrete).map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
(((OverColor.lift.obj S.FDiscrete).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
||||
((PiTensorProduct.tprod S.k) _)) = _
|
||||
((PiTensorProduct.tprod S.k) _)) = _
|
||||
rw [OverColor.lift.map_tprod S.FDiscrete]
|
||||
change ((OverColor.lift.obj S.FDiscrete).map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
change ((OverColor.lift.obj S.FDiscrete).map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
((PiTensorProduct.tprod S.k _)) = _
|
||||
rw [OverColor.lift.map_tprod S.FDiscrete]
|
||||
apply congrArg
|
||||
funext r
|
||||
match r with
|
||||
| Sum.inl 0 =>
|
||||
simp [OverColor.lift.discreteSumEquiv, HepLean.PiTensorProduct.elimPureTensor]
|
||||
simp [OverColor.lift.discreteFunctorMapEqIso]
|
||||
simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply,
|
||||
instMonoidalCategoryStruct_tensorObj_left, mkSum_inv_homToEquiv, Equiv.refl_symm,
|
||||
instMonoidalCategoryStruct_tensorObj_hom, Functor.id_obj, lift.discreteSumEquiv, Sum.elim_inl,
|
||||
Sum.elim_inr, HepLean.PiTensorProduct.elimPureTensor]
|
||||
simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
|
||||
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
| Sum.inr 0 =>
|
||||
simp [OverColor.lift.discreteFunctorMapEqIso, OverColor.lift.discreteSumEquiv, HepLean.PiTensorProduct.elimPureTensor]
|
||||
simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply,
|
||||
instMonoidalCategoryStruct_tensorObj_left, mkSum_inv_homToEquiv, Equiv.refl_symm,
|
||||
instMonoidalCategoryStruct_tensorObj_hom, lift.discreteFunctorMapEqIso, eqToIso_refl,
|
||||
Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.mapIso_hom,
|
||||
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, Functor.id_obj, lift.discreteSumEquiv,
|
||||
Sum.elim_inl, Sum.elim_inr, HepLean.PiTensorProduct.elimPureTensor,
|
||||
LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
|
||||
lemma contrFin1Fin1_hom_hom_tprod {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
|
@ -163,7 +183,8 @@ lemma contrFin1Fin1_hom_hom_tprod {n : ℕ} (c : Fin n.succ.succ → S.C)
|
|||
| Sum.inl 0 =>
|
||||
simp
|
||||
| Sum.inr 0 =>
|
||||
simp
|
||||
simp only [Nat.succ_eq_add_one, Fin.isValue, mk_hom, Function.comp_apply,
|
||||
Discrete.functor_obj_eq_as]
|
||||
change _ = ((S.FDiscrete.map (eqToHom _)) ≫ (S.FDiscrete.map (eqToHom _))).hom (x (Sum.inr 0))
|
||||
rw [← Functor.map_comp]
|
||||
simp
|
||||
|
@ -182,17 +203,16 @@ def contrIso {n : ℕ} (c : Fin n.succ.succ → S.C)
|
|||
refine tensorIso (S.contrFin1Fin1 c i j h) (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
|
||||
|
||||
lemma contrIso_hom_hom {n : ℕ} {c1 : Fin n.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ} {j : Fin n.succ}
|
||||
{h : c1 (i.succAbove j) = S.τ (c1 i)} :
|
||||
(S.contrIso c1 i j h).hom.hom =
|
||||
(S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ≫
|
||||
(S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom ≫
|
||||
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom ≫
|
||||
((S.contrFin1Fin1 c1 i j h).hom.hom ⊗ (S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom)
|
||||
:= by
|
||||
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)} :
|
||||
(S.contrIso c1 i j h).hom.hom =
|
||||
(S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ≫
|
||||
(S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom ≫
|
||||
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom ≫
|
||||
((S.contrFin1Fin1 c1 i j h).hom.hom ⊗
|
||||
(S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom) := by
|
||||
rw [contrIso]
|
||||
simp [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Action.comp_hom,
|
||||
simp [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Action.comp_hom,
|
||||
extractOne_homToEquiv, Action.instMonoidalCategory_tensorHom_hom]
|
||||
|
||||
/-- `contrMap` is a function that takes a natural number `n`, a function `c` from
|
||||
|
@ -208,14 +228,14 @@ def contrMap {n : ℕ} (c : Fin n.succ.succ → S.C)
|
|||
(tensorHom (S.contr.app (Discrete.mk (c i))) (𝟙 _)) ≫
|
||||
(MonoidalCategory.leftUnitor _).hom
|
||||
|
||||
def castToField (v : (↑((𝟙_ (Discrete S.C ⥤ Rep S.k S.G)).obj { as := c }).V)) : S.k := v
|
||||
def castToField (v : (↑((𝟙_ (Discrete S.C ⥤ Rep S.k S.G)).obj { as := c }).V)) : S.k := v
|
||||
|
||||
lemma contrMap_tprod {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
|
||||
(x : (i : Fin n.succ.succ) → S.FDiscrete.obj (Discrete.mk (c i))) :
|
||||
(S.contrMap c i j h).hom (PiTensorProduct.tprod S.k x) =
|
||||
(S.contrMap c i j h).hom (PiTensorProduct.tprod S.k x) =
|
||||
(S.castToField ((S.contr.app (Discrete.mk (c i))).hom ((x i) ⊗ₜ[S.k]
|
||||
(S.FDiscrete.map (Discrete.eqToHom h)).hom (x (i.succAbove j)))): S.k)
|
||||
(S.FDiscrete.map (Discrete.eqToHom h)).hom (x (i.succAbove j)))) : S.k)
|
||||
• (PiTensorProduct.tprod S.k (fun k => x (i.succAbove (j.succAbove k))) : S.F.obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))) := by
|
||||
rw [contrMap, contrIso]
|
||||
simp only [Nat.succ_eq_add_one, S.F_def, Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom,
|
||||
|
@ -261,18 +281,15 @@ lemma contrMap_tprod {n : ℕ} (c : Fin n.succ.succ → S.C)
|
|||
((TensorProduct.map (S.contrFin1Fin1 c i j h).hom.hom ((lift.obj S.FDiscrete).map (mkIso ⋯).hom).hom)
|
||||
(((PiTensorProduct.tprod S.k) fun i_1 =>
|
||||
(lift.discreteFunctorMapEqIso S.FDiscrete ⋯)
|
||||
((lift.discreteFunctorMapEqIso S.FDiscrete ⋯)
|
||||
(x
|
||||
((lift.discreteFunctorMapEqIso S.FDiscrete ⋯) (x
|
||||
((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
|
||||
((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm
|
||||
(Sum.inl i_1)))))) ⊗ₜ[S.k]
|
||||
(PiTensorProduct.tprod S.k) fun i_1 =>
|
||||
(lift.discreteFunctorMapEqIso S.FDiscrete ⋯)
|
||||
((lift.discreteFunctorMapEqIso S.FDiscrete ⋯)
|
||||
(x
|
||||
((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
|
||||
((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm (Sum.inr i_1)))))))) =
|
||||
_
|
||||
(lift.discreteFunctorMapEqIso S.FDiscrete ⋯) ((lift.discreteFunctorMapEqIso S.FDiscrete ⋯)
|
||||
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
|
||||
((Hom.toEquiv
|
||||
(mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm (Sum.inr i_1)))))))) = _
|
||||
rw [TensorProduct.map_tmul]
|
||||
rw [contrFin1Fin1_hom_hom_tprod]
|
||||
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V,
|
||||
|
@ -280,33 +297,37 @@ lemma contrMap_tprod {n : ℕ} (c : Fin n.succ.succ → S.C)
|
|||
Discrete.functor_obj_eq_as, instMonoidalCategoryStruct_tensorObj_left, mkSum_homToEquiv,
|
||||
Equiv.refl_symm, Functor.id_obj, ModuleCat.MonoidalCategory.whiskerRight_apply]
|
||||
rw [Action.instMonoidalCategory_leftUnitor_hom_hom]
|
||||
simp
|
||||
simp only [Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue,
|
||||
ModuleCat.MonoidalCategory.leftUnitor_hom_apply]
|
||||
congr 1
|
||||
/- The contraction. -/
|
||||
· simp [castToField]
|
||||
· simp only [Fin.isValue, castToField]
|
||||
congr 2
|
||||
· simp [lift.discreteFunctorMapEqIso]
|
||||
· simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
|
||||
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
· simp [lift.discreteFunctorMapEqIso, h]
|
||||
change (S.FDiscrete.map (eqToHom _)).hom
|
||||
(x (((HepLean.Fin.finExtractTwo i j)).symm ((Sum.inl (Sum.inr 0))))) = _
|
||||
simp [CategoryTheory.Discrete.functor_map_id]
|
||||
simp only [Nat.succ_eq_add_one, Fin.isValue]
|
||||
have h1' {a b d: Fin n.succ.succ} (hbd : b =d) (h : c d = S.τ (c a)) (h' : c b = S.τ (c a)) :
|
||||
(S.FDiscrete.map (Discrete.eqToHom (h))).hom (x d) =
|
||||
(S.FDiscrete.map (Discrete.eqToHom h')).hom (x b) := by
|
||||
(S.FDiscrete.map (Discrete.eqToHom (h))).hom (x d) =
|
||||
(S.FDiscrete.map (Discrete.eqToHom h')).hom (x b) := by
|
||||
subst hbd
|
||||
rfl
|
||||
refine h1' ?_ ?_ ?_
|
||||
simp
|
||||
simp only [Nat.succ_eq_add_one, Fin.isValue, HepLean.Fin.finExtractTwo_symm_inl_inr_apply]
|
||||
simp [h]
|
||||
/- The tensor. -/
|
||||
· erw [lift.map_tprod]
|
||||
apply congrArg
|
||||
funext d
|
||||
simp [lift.discreteFunctorMapEqIso]
|
||||
simp only [mk_hom, Function.comp_apply, lift.discreteFunctorMapEqIso, Functor.mapIso_hom,
|
||||
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom,
|
||||
Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
|
||||
change (S.FDiscrete.map (eqToHom _)).hom
|
||||
((x ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr (d))))) = _
|
||||
simp [CategoryTheory.Discrete.functor_map_id ]
|
||||
((x ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr (d))))) = _
|
||||
simp only [Nat.succ_eq_add_one]
|
||||
have h1 : ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr d)) = (i.succAbove (j.succAbove d)) := by
|
||||
exact HepLean.Fin.finExtractTwo_symm_inr_apply i j d
|
||||
have h1' {a b : Fin n.succ.succ} (h : a = b) :
|
||||
|
@ -437,14 +458,14 @@ lemma constTwoNode_tensor {c1 c2 : S.C}
|
|||
|
||||
lemma prod_tensor {c1 : Fin n → S.C} {c2 : Fin m → S.C} (t1 : TensorTree S c1) (t2 : TensorTree S c2) :
|
||||
(prod t1 t2).tensor = (S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom
|
||||
((S.F.μ _ _).hom (t1.tensor ⊗ₜ t2.tensor)) := rfl
|
||||
((S.F.μ _ _).hom (t1.tensor ⊗ₜ t2.tensor)) := rfl
|
||||
|
||||
lemma add_tensor (t1 t2 : TensorTree S c) : (add t1 t2).tensor = t1.tensor + t2.tensor := rfl
|
||||
|
||||
lemma perm_tensor (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t : TensorTree S c) :
|
||||
(perm σ t).tensor = (S.F.map σ).hom t.tensor := rfl
|
||||
|
||||
lemma contr_tensor {n : ℕ} {c : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = S.τ (c i)}
|
||||
lemma contr_tensor {n : ℕ} {c : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = S.τ (c i)}
|
||||
(t : TensorTree S c) : (contr i j h t).tensor = (S.contrMap c i j h).hom t.tensor := rfl
|
||||
|
||||
lemma neg_tensor (t : TensorTree S c) : (neg t).tensor = - t.tensor := rfl
|
||||
|
@ -462,17 +483,21 @@ lemma contr_tensor_eq {n : ℕ} {c : Fin n.succ.succ → S.C} {T1 T2 : TensorTre
|
|||
rw [h]
|
||||
|
||||
lemma prod_tensor_eq_fst {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
||||
{T1 T1' : TensorTree S c} { T2 : TensorTree S c1}
|
||||
{T1 T1' : TensorTree S c} { T2 : TensorTree S c1}
|
||||
(h : T1.tensor = T1'.tensor) :
|
||||
(prod T1 T2).tensor = (prod T1' T2).tensor := by
|
||||
simp [prod_tensor]
|
||||
simp only [prod_tensor, Functor.id_obj, OverColor.mk_hom, Action.instMonoidalCategory_tensorObj_V,
|
||||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj]
|
||||
rw [h]
|
||||
|
||||
lemma prod_tensor_eq_snd {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
||||
{T1 : TensorTree S c} {T2 T2' : TensorTree S c1}
|
||||
(h : T2.tensor = T2'.tensor) :
|
||||
(prod T1 T2).tensor = (prod T1 T2').tensor := by
|
||||
simp [prod_tensor]
|
||||
simp only [prod_tensor, Functor.id_obj, OverColor.mk_hom, Action.instMonoidalCategory_tensorObj_V,
|
||||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj]
|
||||
rw [h]
|
||||
|
||||
end
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue