refactor: Simp to simp only ...

This commit is contained in:
jstoobysmith 2024-10-19 09:19:29 +00:00
parent b2ac704d80
commit 855dc5146d
12 changed files with 257 additions and 192 deletions

View file

@ -39,9 +39,9 @@ lemma contrFin1Fin1_naturality {n : } {c c1 : Fin n.succ.succ → S.C}
(perm_contr_cond S h σ)).hom
≫ ((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i)
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)))) := by
erw [← CategoryTheory.Iso.eq_comp_inv ]
erw [← CategoryTheory.Iso.eq_comp_inv]
rw [CategoryTheory.Category.assoc]
erw [← CategoryTheory.Iso.inv_comp_eq ]
erw [← CategoryTheory.Iso.inv_comp_eq]
ext1
apply TensorProduct.ext'
intro x y
@ -51,7 +51,11 @@ lemma contrFin1Fin1_naturality {n : } {c c1 : Fin n.succ.succ → S.C}
extractOne_homToEquiv, Action.Hom.comp_hom, LinearMap.coe_comp]
trans (S.F.map (extractTwoAux' i j σ)).hom (PiTensorProduct.tprod S.k (fun k =>
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FDiscrete.map
(eqToHom (by simp; erw [perm_contr_cond S h σ]))).hom y))
(eqToHom (by
simp only [Nat.succ_eq_add_one, Discrete.functor_obj_eq_as, Function.comp_apply,
extractOne_homToEquiv, Fin.isValue, mk_hom, finExtractTwo_symm_inl_inr_apply,
Discrete.mk.injEq]
erw [perm_contr_cond S h σ]))).hom y))
· apply congrArg
have h1' {α :Type} {a b c d : α} (hab : a= b) (hcd : c = d) (h : a = d) : b = c := by
rw [← hab, hcd]
@ -77,8 +81,11 @@ lemma contrFin1Fin1_naturality {n : } {c c1 : Fin n.succ.succ → S.C}
match i with
| Sum.inl 0 => rfl
| Sum.inr 0 =>
simp [lift.discreteFunctorMapEqIso]
change ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y = ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y
simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply,
extractOne_homToEquiv, lift.discreteFunctorMapEqIso, Functor.mapIso_hom, eqToIso.hom,
Functor.mapIso_inv, eqToIso.inv, Functor.id_obj, Discrete.functor_obj_eq_as,
LinearEquiv.ofLinear_apply]
change ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y = ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y
rw [← Functor.map_comp, ← Functor.map_comp]
simp only [Fin.isValue, Nat.succ_eq_add_one, Discrete.functor_obj_eq_as, Function.comp_apply,
eqToHom_trans]
@ -89,12 +96,11 @@ lemma contrIso_comm_aux_1 {n : } {c c1 : Fin n.succ.succ → S.C}
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
((S.F.map σ).hom ≫ (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom) ≫
(S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom =
(S.F.map (equivToIso (HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom).hom ≫ (S.F.map
(mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i)
(S.F.map (equivToIso (HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom).hom ≫ (S.F.map
(mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)).symm)).hom).hom
≫ (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom
:= by
≫ (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom := by
ext X
change ((S.F.map σ) ≫ (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom) ≫ (S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom)).hom X = _
rw [← Functor.map_comp, ← Functor.map_comp]
@ -109,14 +115,14 @@ lemma contrIso_comm_aux_2 {n : } {c c1 : Fin n.succ.succ → S.C}
(S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom ≫
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom =
(S.F.μIso _ _).inv.hom ≫ (S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)).hom
:= by
(S.F.μIso _ _).inv.hom ≫
(S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)).hom := by
have h1 : (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)) ≫
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv =
(S.F.μIso _ _).inv ≫ (S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)) := by
erw [CategoryTheory.IsIso.comp_inv_eq, CategoryTheory.Category.assoc]
erw [CategoryTheory.IsIso.eq_inv_comp ]
erw [CategoryTheory.IsIso.eq_inv_comp]
exact Eq.symm
(LaxMonoidalFunctor.μ_natural S.F.toLaxMonoidalFunctor (extractTwoAux' i j σ)
(extractTwoAux i j σ))
@ -143,8 +149,9 @@ lemma contrIso_comm_aux_3 {n : } {c c1 : Fin n.succ.succ → S.C}
def contrIsoComm {n : } {c c1 : Fin n.succ.succ → S.C}
{i : Fin n.succ.succ} {j : Fin n.succ} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :=
(((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i)
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)))) ⊗ (S.F.map (extractTwo i j σ)))
(((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) :
(Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶
(Discrete.mk (c1 i)))) ⊗ (S.F.map (extractTwo i j σ)))
lemma contrIso_comm_aux_5 {n : } {c c1 : Fin n.succ.succ → S.C}
{i : Fin n.succ.succ} {j : Fin n.succ} (h : c1 (i.succAbove j) = S.τ (c1 i))
@ -155,8 +162,7 @@ lemma contrIso_comm_aux_5 {n : } {c c1 : Fin n.succ.succ → S.C}
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
(perm_contr_cond S h σ)).hom.hom ⊗ (S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom).hom)
≫ (S.contrIsoComm σ).hom
:= by
≫ (S.contrIsoComm σ).hom := by
erw [← CategoryTheory.MonoidalCategory.tensor_comp (f₁ := (S.F.map (extractTwoAux' i j σ)).hom)]
rw [contrIso_comm_aux_3 S σ]
rw [contrFin1Fin1_naturality S h σ]