refactor: Simp to simp only ...
This commit is contained in:
parent
b2ac704d80
commit
855dc5146d
12 changed files with 257 additions and 192 deletions
|
@ -39,9 +39,9 @@ lemma contrFin1Fin1_naturality {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
|||
(perm_contr_cond S h σ)).hom
|
||||
≫ ((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i)
|
||||
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)))) := by
|
||||
erw [← CategoryTheory.Iso.eq_comp_inv ]
|
||||
erw [← CategoryTheory.Iso.eq_comp_inv]
|
||||
rw [CategoryTheory.Category.assoc]
|
||||
erw [← CategoryTheory.Iso.inv_comp_eq ]
|
||||
erw [← CategoryTheory.Iso.inv_comp_eq]
|
||||
ext1
|
||||
apply TensorProduct.ext'
|
||||
intro x y
|
||||
|
@ -51,7 +51,11 @@ lemma contrFin1Fin1_naturality {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
|||
extractOne_homToEquiv, Action.Hom.comp_hom, LinearMap.coe_comp]
|
||||
trans (S.F.map (extractTwoAux' i j σ)).hom (PiTensorProduct.tprod S.k (fun k =>
|
||||
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FDiscrete.map
|
||||
(eqToHom (by simp; erw [perm_contr_cond S h σ]))).hom y))
|
||||
(eqToHom (by
|
||||
simp only [Nat.succ_eq_add_one, Discrete.functor_obj_eq_as, Function.comp_apply,
|
||||
extractOne_homToEquiv, Fin.isValue, mk_hom, finExtractTwo_symm_inl_inr_apply,
|
||||
Discrete.mk.injEq]
|
||||
erw [perm_contr_cond S h σ]))).hom y))
|
||||
· apply congrArg
|
||||
have h1' {α :Type} {a b c d : α} (hab : a= b) (hcd : c = d) (h : a = d) : b = c := by
|
||||
rw [← hab, hcd]
|
||||
|
@ -77,8 +81,11 @@ lemma contrFin1Fin1_naturality {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
|||
match i with
|
||||
| Sum.inl 0 => rfl
|
||||
| Sum.inr 0 =>
|
||||
simp [lift.discreteFunctorMapEqIso]
|
||||
change ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y = ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y
|
||||
simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply,
|
||||
extractOne_homToEquiv, lift.discreteFunctorMapEqIso, Functor.mapIso_hom, eqToIso.hom,
|
||||
Functor.mapIso_inv, eqToIso.inv, Functor.id_obj, Discrete.functor_obj_eq_as,
|
||||
LinearEquiv.ofLinear_apply]
|
||||
change ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y = ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y
|
||||
rw [← Functor.map_comp, ← Functor.map_comp]
|
||||
simp only [Fin.isValue, Nat.succ_eq_add_one, Discrete.functor_obj_eq_as, Function.comp_apply,
|
||||
eqToHom_trans]
|
||||
|
@ -89,12 +96,11 @@ lemma contrIso_comm_aux_1 {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
|||
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
|
||||
((S.F.map σ).hom ≫ (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom) ≫
|
||||
(S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom =
|
||||
(S.F.map (equivToIso (HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom).hom ≫ (S.F.map
|
||||
(mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i)
|
||||
(S.F.map (equivToIso (HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom).hom ≫ (S.F.map
|
||||
(mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)).symm)).hom).hom
|
||||
≫ (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom
|
||||
:= by
|
||||
≫ (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom := by
|
||||
ext X
|
||||
change ((S.F.map σ) ≫ (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom) ≫ (S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom)).hom X = _
|
||||
rw [← Functor.map_comp, ← Functor.map_comp]
|
||||
|
@ -109,14 +115,14 @@ lemma contrIso_comm_aux_2 {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
|||
(S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom ≫
|
||||
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom =
|
||||
(S.F.μIso _ _).inv.hom ≫ (S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)).hom
|
||||
:= by
|
||||
(S.F.μIso _ _).inv.hom ≫
|
||||
(S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)).hom := by
|
||||
have h1 : (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)) ≫
|
||||
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv =
|
||||
(S.F.μIso _ _).inv ≫ (S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)) := by
|
||||
erw [CategoryTheory.IsIso.comp_inv_eq, CategoryTheory.Category.assoc]
|
||||
erw [CategoryTheory.IsIso.eq_inv_comp ]
|
||||
erw [CategoryTheory.IsIso.eq_inv_comp]
|
||||
exact Eq.symm
|
||||
(LaxMonoidalFunctor.μ_natural S.F.toLaxMonoidalFunctor (extractTwoAux' i j σ)
|
||||
(extractTwoAux i j σ))
|
||||
|
@ -143,8 +149,9 @@ lemma contrIso_comm_aux_3 {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
|||
|
||||
def contrIsoComm {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ} {j : Fin n.succ} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :=
|
||||
(((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i)
|
||||
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)))) ⊗ (S.F.map (extractTwo i j σ)))
|
||||
(((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) :
|
||||
(Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶
|
||||
(Discrete.mk (c1 i)))) ⊗ (S.F.map (extractTwo i j σ)))
|
||||
|
||||
lemma contrIso_comm_aux_5 {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ} {j : Fin n.succ} (h : c1 (i.succAbove j) = S.τ (c1 i))
|
||||
|
@ -155,8 +162,7 @@ lemma contrIso_comm_aux_5 {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
|||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
|
||||
(perm_contr_cond S h σ)).hom.hom ⊗ (S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom).hom)
|
||||
≫ (S.contrIsoComm σ).hom
|
||||
:= by
|
||||
≫ (S.contrIsoComm σ).hom := by
|
||||
erw [← CategoryTheory.MonoidalCategory.tensor_comp (f₁ := (S.F.map (extractTwoAux' i j σ)).hom)]
|
||||
rw [contrIso_comm_aux_3 S σ]
|
||||
rw [contrFin1Fin1_naturality S h σ]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue