Update DimSevenPlane.lean
This commit is contained in:
parent
fb07838d20
commit
855ead59d5
1 changed files with 8 additions and 20 deletions
|
@ -259,21 +259,14 @@ lemma Bi_Bj_Bk_cubic (i j k : Fin 7) :
|
|||
theorem B_in_accCube (f : Fin 7 → ℚ) : accCube (∑ i, f i • B i) = 0 := by
|
||||
change cubeTriLin _ _ _ = 0
|
||||
rw [cubeTriLin.map_sum₁₂₃]
|
||||
apply Fintype.sum_eq_zero
|
||||
intro i
|
||||
apply Fintype.sum_eq_zero
|
||||
intro k
|
||||
apply Fintype.sum_eq_zero
|
||||
intro l
|
||||
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂, cubeTriLin.map_smul₃]
|
||||
rw [Bi_Bj_Bk_cubic]
|
||||
apply Fintype.sum_eq_zero _ fun i ↦ Fintype.sum_eq_zero _ fun k ↦ Fintype.sum_eq_zero _ fun l ↦ ?_
|
||||
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂, cubeTriLin.map_smul₃, Bi_Bj_Bk_cubic]
|
||||
simp
|
||||
|
||||
lemma B_sum_is_sol (f : Fin 7 → ℚ) : (SM 3).IsSolution (∑ i, f i • B i) := by
|
||||
let X := chargeToAF (∑ i, f i • B i) (by
|
||||
rw [map_sum]
|
||||
apply Fintype.sum_eq_zero
|
||||
intro i
|
||||
apply Fintype.sum_eq_zero _ fun i ↦ ?_
|
||||
rw [map_smul]
|
||||
have h : accGrav (B i) = 0 := by
|
||||
fin_cases i <;> rfl
|
||||
|
@ -281,20 +274,16 @@ lemma B_sum_is_sol (f : Fin 7 → ℚ) : (SM 3).IsSolution (∑ i, f i • B i)
|
|||
exact DistribMulAction.smul_zero (f i))
|
||||
(by
|
||||
rw [map_sum]
|
||||
apply Fintype.sum_eq_zero
|
||||
intro i
|
||||
apply Fintype.sum_eq_zero _ fun i ↦ ?_
|
||||
rw [map_smul]
|
||||
have h : accSU2 (B i) = 0 := by
|
||||
fin_cases i <;> rfl
|
||||
have h : accSU2 (B i) = 0 := by fin_cases i <;> rfl
|
||||
rw [h]
|
||||
exact DistribMulAction.smul_zero (f i))
|
||||
(by
|
||||
rw [map_sum]
|
||||
apply Fintype.sum_eq_zero
|
||||
intro i
|
||||
apply Fintype.sum_eq_zero _ fun i ↦ ?_
|
||||
rw [map_smul]
|
||||
have h : accSU3 (B i) = 0 := by
|
||||
fin_cases i <;> rfl
|
||||
have h : accSU3 (B i) = 0 := by fin_cases i <;> rfl
|
||||
rw [h]
|
||||
exact DistribMulAction.smul_zero (f i))
|
||||
(B_in_accCube f)
|
||||
|
@ -302,8 +291,7 @@ lemma B_sum_is_sol (f : Fin 7 → ℚ) : (SM 3).IsSolution (∑ i, f i • B i)
|
|||
rfl
|
||||
|
||||
theorem basis_linear_independent : LinearIndependent ℚ B := by
|
||||
apply Fintype.linearIndependent_iff.mpr
|
||||
intro f h
|
||||
refine Fintype.linearIndependent_iff.mpr fun f h ↦ ?_
|
||||
have h0 := congrFun h (0 : Fin 18)
|
||||
have h1 := congrFun h (3 : Fin 18)
|
||||
have h2 := congrFun h (6 : Fin 18)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue