Merge pull request #154 from HEPLean/informal_defs

feat: Informal lemma and def for Weyl fermions
This commit is contained in:
Joseph Tooby-Smith 2024-09-17 04:59:54 -04:00 committed by GitHub
commit 85abe6bbe2
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 25 additions and 1 deletions

View file

@ -18,20 +18,24 @@ import HepLean.Meta.Informal
informal_definition leftHandedWeylFermion where
math :≈ "The vector space ^2 carrying the fundamental representation of SL(2,C)."
physics :≈ "A Weyl fermion with indices ψ_a."
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
informal_definition rightHandedWeylFermion where
math :≈ "The vector space ^2 carrying the conjguate representation of SL(2,C)."
physics :≈ "A Weyl fermion with indices ψ_{dot a}."
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
informal_definition altLeftHandedWeylFermion where
math :≈ "The vector space ^2 carrying the representation of SL(2,C) given by
M → (M⁻¹)ᵀ."
physics :≈ "A Weyl fermion with indices ψ^a."
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
informal_definition altRightHandedWeylFermion where
math :≈ "The vector space ^2 carrying the representation of SL(2,C) given by
M → (M⁻¹)^†."
physics :≈ "A Weyl fermion with indices ψ^{dot a}."
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
/-!
@ -59,3 +63,23 @@ informal_lemma rightHandedWeylFermionAltEquiv_equivariant where
math :≈ "The linear equiv rightHandedWeylFermionAltEquiv is equivariant with respect to the
action of SL(2,C) on rightHandedWeylFermion and altRightHandedWeylFermion."
deps :≈ [`rightHandedWeylFermionAltEquiv]
/-!
## Contraction of Weyl fermions.
-/
informal_definition leftAltWeylFermionContraction where
math :≈ "The linear map from leftHandedWeylFermion ⊗ altLeftHandedWeylFermion to given by
summing over components of leftHandedWeylFermion and altLeftHandedWeylFermion in the
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a left-handed Weyl fermion with a right-handed Weyl fermion.
In index notation this is ψ_a φ^a."
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
deps :≈ [``leftHandedWeylFermion, ``altLeftHandedWeylFermion]
informal_lemma leftAltWeylFermionContraction_invariant where
math :≈ "The contraction leftAltWeylFermionContraction is invariant with respect to
the action of SL(2,C) on leftHandedWeylFermion and altLeftHandedWeylFermion."
deps :≈ [`leftAltWeylFermionContraction]

View file

@ -320,7 +320,7 @@ informal_lemma isBounded_iff_of_𝓵_zero where
non-positive."
math :≈ "For `P : Potential` then P.IsBounded if and only if P.μ2 ≤ 0.
That is to say `- P.μ2 * ‖φ‖_H ^ 2 x` is bounded below if and only if `P.μ2 ≤ 0`."
deps :≈ [`StandardModel.HiggsField.Potential.IsBounded, `StandardModel.HiggsField.Potential]
/-!
## Minimum and maximum