refactor: Lint
This commit is contained in:
parent
5af2eb4d8d
commit
8667120377
3 changed files with 18 additions and 12 deletions
|
@ -28,7 +28,7 @@ open ComplexConjugate
|
|||
abbrev spaceTime := EuclideanSpace ℝ (Fin 4)
|
||||
|
||||
/-- The global gauge group of the standard model. TODO: Generalize to quotient. -/
|
||||
abbrev guageGroup : Type :=
|
||||
abbrev gaugeGroup : Type :=
|
||||
specialUnitaryGroup (Fin 3) ℂ × specialUnitaryGroup (Fin 2) ℂ × unitary ℂ
|
||||
|
||||
end StandardModel
|
||||
|
|
|
@ -56,8 +56,9 @@ lemma smooth_higgsVecToFin2ℂ : Smooth 𝓘(ℝ, higgsVec) 𝓘(ℝ, Fin 2 →
|
|||
|
||||
namespace higgsVec
|
||||
|
||||
/-- The Higgs representation as a homomorphism from the gauge group to unitary `2×2`-matrices. -/
|
||||
@[simps!]
|
||||
noncomputable def higgsRepUnitary : guageGroup →* unitaryGroup (Fin 2) ℂ where
|
||||
noncomputable def higgsRepUnitary : gaugeGroup →* unitaryGroup (Fin 2) ℂ where
|
||||
toFun g := repU1 g.2.2 * fundamentalSU2 g.2.1
|
||||
map_mul' := by
|
||||
intro ⟨_, a2, a3⟩ ⟨_, b2, b3⟩
|
||||
|
@ -73,7 +74,6 @@ noncomputable def orthonormBasis : OrthonormalBasis (Fin 2) ℂ higgsVec :=
|
|||
EuclideanSpace.basisFun (Fin 2) ℂ
|
||||
|
||||
/-- Takes in a `2×2`-matrix and returns a linear map of `higgsVec`. -/
|
||||
@[simps!]
|
||||
noncomputable def matrixToLin : Matrix (Fin 2) (Fin 2) ℂ →* (higgsVec →L[ℂ] higgsVec) where
|
||||
toFun g := LinearMap.toContinuousLinearMap
|
||||
$ Matrix.toLin orthonormBasis.toBasis orthonormBasis.toBasis g
|
||||
|
@ -91,7 +91,8 @@ lemma matrixToLin_unitary (g : unitaryGroup (Fin 2) ℂ) :
|
|||
rw [mem_unitaryGroup_iff.mp g.prop, mem_unitaryGroup_iff'.mp g.prop, matrixToLin.map_one]
|
||||
simp
|
||||
|
||||
@[simps!]
|
||||
/-- The natural homomorphism from unitary `2×2` complex matrices to unitary transformations
|
||||
of `higgsVec`. -/
|
||||
noncomputable def unitaryToLin : unitaryGroup (Fin 2) ℂ →* unitary (higgsVec →L[ℂ] higgsVec) where
|
||||
toFun g := ⟨matrixToLin g, matrixToLin_unitary g⟩
|
||||
map_mul' g h := by
|
||||
|
@ -101,31 +102,33 @@ noncomputable def unitaryToLin : unitaryGroup (Fin 2) ℂ →* unitary (higgsVec
|
|||
ext
|
||||
simp
|
||||
|
||||
/-- The inclusion of unitary transformations on `higgsVec` into all linear transformations. -/
|
||||
@[simps!]
|
||||
def unitToLinear : unitary (higgsVec →L[ℂ] higgsVec) →* higgsVec →ₗ[ℂ] higgsVec :=
|
||||
DistribMulAction.toModuleEnd ℂ higgsVec
|
||||
|
||||
/-- The representation of the gauge group acting on `higgsVec`. -/
|
||||
@[simps!]
|
||||
def rep : Representation ℂ guageGroup higgsVec :=
|
||||
def rep : Representation ℂ gaugeGroup higgsVec :=
|
||||
unitToLinear.comp (unitaryToLin.comp higgsRepUnitary)
|
||||
|
||||
lemma higgsRepUnitary_mul (g : guageGroup) (φ : higgsVec) :
|
||||
lemma higgsRepUnitary_mul (g : gaugeGroup) (φ : higgsVec) :
|
||||
(higgsRepUnitary g).1 *ᵥ φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) := by
|
||||
simp only [higgsRepUnitary_apply_coe]
|
||||
exact smul_mulVec_assoc (g.2.2 ^ 3) (g.2.1.1) φ
|
||||
|
||||
lemma rep_apply (g : guageGroup) (φ : higgsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
|
||||
lemma rep_apply (g : gaugeGroup) (φ : higgsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
|
||||
higgsRepUnitary_mul g φ
|
||||
|
||||
|
||||
lemma norm_invariant (g : guageGroup) (φ : higgsVec) : ‖rep g φ‖ = ‖φ‖ :=
|
||||
lemma norm_invariant (g : gaugeGroup) (φ : higgsVec) : ‖rep g φ‖ = ‖φ‖ :=
|
||||
ContinuousLinearMap.norm_map_of_mem_unitary (unitaryToLin (higgsRepUnitary g)).2 φ
|
||||
|
||||
/-- The higgs potential for `higgsVec`, i.e. for constant higgs fields. -/
|
||||
def potential (μSq lambda : ℝ) (φ : higgsVec) : ℝ := - μSq * ‖φ‖ ^ 2 +
|
||||
lambda * ‖φ‖ ^ 4
|
||||
|
||||
lemma potential_invariant (μSq lambda : ℝ) (φ : higgsVec) (g : guageGroup) :
|
||||
lemma potential_invariant (μSq lambda : ℝ) (φ : higgsVec) (g : gaugeGroup) :
|
||||
potential μSq lambda (rep g φ) = potential μSq lambda φ := by
|
||||
simp only [potential, neg_mul]
|
||||
rw [norm_invariant]
|
||||
|
@ -339,7 +342,7 @@ lemma rotateMatrix_specialUnitary {φ : higgsVec} (hφ : φ ≠ 0) :
|
|||
|
||||
/-- Given a Higgs vector, an element of the gauge group which puts the fst component of the
|
||||
vector to zero, and the snd componenet to a real -/
|
||||
def rotateGuageGroup {φ : higgsVec} (hφ : φ ≠ 0) : guageGroup :=
|
||||
def rotateGuageGroup {φ : higgsVec} (hφ : φ ≠ 0) : gaugeGroup :=
|
||||
⟨1, ⟨(rotateMatrix φ), rotateMatrix_specialUnitary hφ⟩, 1⟩
|
||||
|
||||
lemma rotateGuageGroup_apply {φ : higgsVec} (hφ : φ ≠ 0) :
|
||||
|
@ -360,7 +363,7 @@ lemma rotateGuageGroup_apply {φ : higgsVec} (hφ : φ ≠ 0) :
|
|||
rfl
|
||||
|
||||
theorem rotate_fst_zero_snd_real (φ : higgsVec) :
|
||||
∃ (g : guageGroup), rep g φ = ![0, ofReal ‖φ‖] := by
|
||||
∃ (g : gaugeGroup), rep g φ = ![0, ofReal ‖φ‖] := by
|
||||
by_cases h : φ = 0
|
||||
· use ⟨1, 1, 1⟩
|
||||
simp [h]
|
||||
|
|
|
@ -25,7 +25,7 @@ open Matrix
|
|||
open Complex
|
||||
open ComplexConjugate
|
||||
|
||||
|
||||
/-- The 2d representation of U(1) with charge 3 as a map from U(1) to `unitaryGroup (Fin 2) ℂ`. -/
|
||||
@[simps!]
|
||||
noncomputable def repU1Map (g : unitary ℂ) : unitaryGroup (Fin 2) ℂ :=
|
||||
⟨g ^ 3 • 1, by
|
||||
|
@ -36,6 +36,8 @@ noncomputable def repU1Map (g : unitary ℂ) : unitaryGroup (Fin 2) ℂ :=
|
|||
erw [(unitary.mem_iff.mp g.prop).2]
|
||||
simp only [one_pow, one_smul]⟩
|
||||
|
||||
/-- The 2d representation of U(1) with charge 3 as a homomorphism
|
||||
from U(1) to `unitaryGroup (Fin 2) ℂ`. -/
|
||||
@[simps!]
|
||||
noncomputable def repU1 : unitary ℂ →* unitaryGroup (Fin 2) ℂ where
|
||||
toFun g := repU1Map g
|
||||
|
@ -44,6 +46,7 @@ noncomputable def repU1 : unitary ℂ →* unitaryGroup (Fin 2) ℂ where
|
|||
map_one' := by
|
||||
simp only [repU1Map, one_pow, one_smul, Submonoid.mk_eq_one]
|
||||
|
||||
/-- The fundamental representation of SU(2) as a homomorphism to `unitaryGroup (Fin 2) ℂ`. -/
|
||||
@[simps!]
|
||||
def fundamentalSU2 : specialUnitaryGroup (Fin 2) ℂ →* unitaryGroup (Fin 2) ℂ where
|
||||
toFun g := ⟨g.1, g.prop.1⟩
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue