feat: Add representations for real Lorentz vecs

This commit is contained in:
jstoobysmith 2024-11-08 06:54:55 +00:00
parent 6b6f9261ca
commit 87865a00b7
3 changed files with 42 additions and 1 deletions

View file

@ -90,6 +90,7 @@ import HepLean.SpaceTime.LorentzVector.Complex.Unit
import HepLean.SpaceTime.LorentzVector.Covariant
import HepLean.SpaceTime.LorentzVector.LorentzAction
import HepLean.SpaceTime.LorentzVector.NormOne
import HepLean.SpaceTime.LorentzVector.Real.Basic
import HepLean.SpaceTime.LorentzVector.Real.Modules
import HepLean.SpaceTime.MinkowskiMetric
import HepLean.SpaceTime.PauliMatrices.AsTensor

View file

@ -0,0 +1,40 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import Mathlib.Data.Complex.Exponential
import Mathlib.Analysis.InnerProductSpace.PiL2
import HepLean.SpaceTime.SL2C.Basic
import HepLean.SpaceTime.LorentzVector.Complex.Modules
import HepLean.Meta.Informal
import Mathlib.RepresentationTheory.Rep
import HepLean.SpaceTime.LorentzVector.Real.Modules
/-!
# Real Lorentz vectors
We define real Lorentz vectors in as representations of the Lorentz group.
-/
noncomputable section
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open SpaceTime
namespace Lorentz
/-- The representation of `LorentzGroup d` on real vectors corresponding to contravariant
Lorentz vectors. In index notation these have an up index `ψⁱ`. -/
def Contr (d : ) : Rep (LorentzGroup d) := Rep.of ContrModule.rep
/-- The representation of `LorentzGroup d` on real vectors corresponding to covariant
Lorentz vectors. In index notation these have an up index `ψⁱ`. -/
def Co (d : ) : Rep (LorentzGroup d) := Rep.of CoModule.rep
end Lorentz
end

View file

@ -35,7 +35,7 @@ namespace ContrModule
variable {d : }
/-- The equivalence between `ContrModule` and `Fin 1 ⊕ Fin d → `. -/
def toFin1dFun : ContrModule d ≃ (Fin 1 ⊕ Fin d → ) where
def toFin1dFun : ContrModule d ≃ (Fin 1 ⊕ Fin d → ) where
toFun v := v.val
invFun f := ⟨f⟩
left_inv _ := rfl