feat: Add representations for real Lorentz vecs
This commit is contained in:
parent
6b6f9261ca
commit
87865a00b7
3 changed files with 42 additions and 1 deletions
|
@ -90,6 +90,7 @@ import HepLean.SpaceTime.LorentzVector.Complex.Unit
|
|||
import HepLean.SpaceTime.LorentzVector.Covariant
|
||||
import HepLean.SpaceTime.LorentzVector.LorentzAction
|
||||
import HepLean.SpaceTime.LorentzVector.NormOne
|
||||
import HepLean.SpaceTime.LorentzVector.Real.Basic
|
||||
import HepLean.SpaceTime.LorentzVector.Real.Modules
|
||||
import HepLean.SpaceTime.MinkowskiMetric
|
||||
import HepLean.SpaceTime.PauliMatrices.AsTensor
|
||||
|
|
40
HepLean/SpaceTime/LorentzVector/Real/Basic.lean
Normal file
40
HepLean/SpaceTime/LorentzVector/Real/Basic.lean
Normal file
|
@ -0,0 +1,40 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.Data.Complex.Exponential
|
||||
import Mathlib.Analysis.InnerProductSpace.PiL2
|
||||
import HepLean.SpaceTime.SL2C.Basic
|
||||
import HepLean.SpaceTime.LorentzVector.Complex.Modules
|
||||
import HepLean.Meta.Informal
|
||||
import Mathlib.RepresentationTheory.Rep
|
||||
import HepLean.SpaceTime.LorentzVector.Real.Modules
|
||||
/-!
|
||||
|
||||
# Real Lorentz vectors
|
||||
|
||||
We define real Lorentz vectors in as representations of the Lorentz group.
|
||||
|
||||
-/
|
||||
|
||||
noncomputable section
|
||||
|
||||
open Matrix
|
||||
open MatrixGroups
|
||||
open Complex
|
||||
open TensorProduct
|
||||
open SpaceTime
|
||||
|
||||
namespace Lorentz
|
||||
|
||||
/-- The representation of `LorentzGroup d` on real vectors corresponding to contravariant
|
||||
Lorentz vectors. In index notation these have an up index `ψⁱ`. -/
|
||||
def Contr (d : ℕ) : Rep ℝ (LorentzGroup d) := Rep.of ContrℝModule.rep
|
||||
|
||||
/-- The representation of `LorentzGroup d` on real vectors corresponding to covariant
|
||||
Lorentz vectors. In index notation these have an up index `ψⁱ`. -/
|
||||
def Co (d : ℕ) : Rep ℝ (LorentzGroup d) := Rep.of CoℝModule.rep
|
||||
|
||||
end Lorentz
|
||||
end
|
|
@ -35,7 +35,7 @@ namespace ContrℝModule
|
|||
variable {d : ℕ}
|
||||
|
||||
/-- The equivalence between `ContrℝModule` and `Fin 1 ⊕ Fin d → ℂ`. -/
|
||||
def toFin1dℝFun : ContrℝModule d ≃ (Fin 1 ⊕ Fin d → ℝ) where
|
||||
def toFin1dℝFun : ContrℝModule d ≃ (Fin 1 ⊕ Fin d → ℝ) where
|
||||
toFun v := v.val
|
||||
invFun f := ⟨f⟩
|
||||
left_inv _ := rfl
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue