refactor: Lint spelling
This commit is contained in:
parent
99ccbb5d04
commit
87f896550c
2 changed files with 12 additions and 12 deletions
|
@ -27,7 +27,7 @@ This will relation should be made explicit in the future.
|
|||
/-! TODO: Generalize to maps into Lorentz tensors. -/
|
||||
|
||||
/-- The possible `colors` of an index for a RealLorentzTensor.
|
||||
There are two possiblities, `up` and `down`. -/
|
||||
There are two possibilities, `up` and `down`. -/
|
||||
inductive RealLorentzTensor.Colors where
|
||||
| up : RealLorentzTensor.Colors
|
||||
| down : RealLorentzTensor.Colors
|
||||
|
@ -88,7 +88,7 @@ lemma color_eq_dual_symm {μ ν : Colors} (h : μ = τ ν) : ν = τ μ :=
|
|||
/-- The color associated with an element of `x ∈ X` for a tensor `T`. -/
|
||||
def ch {X : Type} (x : X) (T : RealLorentzTensor d X) : Colors := T.color x
|
||||
|
||||
/-- An equivalence of `ColorsIndex` types given an equality of a colors. -/
|
||||
/-- An equivalence of `ColorsIndex` types given an equality of colors. -/
|
||||
def colorsIndexCast {d : ℕ} {μ₁ μ₂ : RealLorentzTensor.Colors} (h : μ₁ = μ₂) :
|
||||
ColorsIndex d μ₁ ≃ ColorsIndex d μ₂ :=
|
||||
Equiv.cast (congrArg (ColorsIndex d) h)
|
||||
|
@ -281,7 +281,7 @@ lemma mapIso_refl : mapIso d (Equiv.refl X) = Equiv.refl _ := rfl
|
|||
## Sums
|
||||
|
||||
-/
|
||||
/-- An equivalence splitting elements of `IndexValue d (Sum.elim TX TY)` into two components. -/
|
||||
/-- An equivalence that splits elements of `IndexValue d (Sum.elim TX TY)` into two components. -/
|
||||
def indexValueSumEquiv {X Y : Type} {TX : X → Colors} {TY : Y → Colors} :
|
||||
IndexValue d (Sum.elim TX TY) ≃ IndexValue d TX × IndexValue d TY where
|
||||
toFun i := (fun x => i (Sum.inl x), fun x => i (Sum.inr x))
|
||||
|
@ -366,7 +366,7 @@ lemma splitIndexValue_sum {T : Marked d X n} [Fintype X] [DecidableEq X]
|
|||
∑ i, P (splitIndexValue i) = ∑ j, ∑ k, P (j, k) := by
|
||||
rw [Equiv.sum_comp splitIndexValue, Fintype.sum_prod_type]
|
||||
|
||||
/-- Contruction of marked index values for the case of 1 marked index. -/
|
||||
/-- Construction of marked index values for the case of 1 marked index. -/
|
||||
def oneMarkedIndexValue {T : Marked d X 1} :
|
||||
ColorsIndex d (T.color (markedPoint X 0)) ≃ T.MarkedIndexValue where
|
||||
toFun x := fun i => match i with
|
||||
|
@ -378,7 +378,7 @@ def oneMarkedIndexValue {T : Marked d X 1} :
|
|||
fin_cases x
|
||||
rfl
|
||||
|
||||
/-- Contruction of marked index values for the case of 2 marked index. -/
|
||||
/-- Construction of marked index values for the case of 2 marked index. -/
|
||||
def twoMarkedIndexValue (T : Marked d X 2) (x : ColorsIndex d (T.color (markedPoint X 0)))
|
||||
(y : ColorsIndex d <| T.color <| markedPoint X 1) :
|
||||
T.MarkedIndexValue := fun i =>
|
||||
|
@ -392,7 +392,7 @@ def unmarkFirstSet (X : Type) (n : ℕ) : (X ⊕ Fin n.succ) ≃ (X ⊕ Fin 1)
|
|||
(((Fin.castOrderIso (Nat.succ_eq_one_add n)).toEquiv.trans finSumFinEquiv.symm)))
|
||||
(Equiv.sumAssoc _ _ _).symm
|
||||
|
||||
/-- Unmark the first marked index of a marked thensor. -/
|
||||
/-- Unmark the first marked index of a marked tensor. -/
|
||||
def unmarkFirst {X : Type} : Marked d X n.succ ≃ Marked d (X ⊕ Fin 1) n :=
|
||||
mapIso d (unmarkFirstSet X n)
|
||||
|
||||
|
@ -431,7 +431,7 @@ lemma markEmbeddingSet_on_not_mem {n : ℕ} (f : Fin n ↪ X) (x : X)
|
|||
rfl
|
||||
simpa using hx
|
||||
|
||||
/-- Marks the indicies of tensor in the image of an embedding. -/
|
||||
/-- Marks the indices of tensor in the image of an embedding. -/
|
||||
@[simps!]
|
||||
def markEmbedding {n : ℕ} (f : Fin n ↪ X) :
|
||||
RealLorentzTensor d X ≃ Marked d {x // x ∈ (Finset.image f Finset.univ)ᶜ} n :=
|
||||
|
@ -458,7 +458,7 @@ lemma markEmbeddingSet_on_not_mem_indexValue_apply {n : ℕ}
|
|||
rw [markEmbeddingSet_on_not_mem f x hx]
|
||||
|
||||
/-- An equivalence between the IndexValues for a tensor `T` and the corresponding
|
||||
tensor with indicies maked by an embedding. -/
|
||||
tensor with indices maked by an embedding. -/
|
||||
@[simps!]
|
||||
def markEmbeddingIndexValue {n : ℕ} (f : Fin n ↪ X) (T : RealLorentzTensor d X) :
|
||||
IndexValue d T.color ≃ IndexValue d (markEmbedding f T).color :=
|
||||
|
@ -568,7 +568,7 @@ def markSingle (x : X) : RealLorentzTensor d X ≃ Marked d {x' // x' ≠ x} 1 :
|
|||
(markEmbedding (embedSingleton x)).trans
|
||||
(mapIso d (Equiv.sumCongr (Equiv.subtypeEquivRight (fun x => by simp)) (Equiv.refl _)))
|
||||
|
||||
/-- Equivalence between index values of a tensor and the corrsponding tensor with a single
|
||||
/-- Equivalence between index values of a tensor and the corresponding tensor with a single
|
||||
marked index. -/
|
||||
@[simps!]
|
||||
def markSingleIndexValue (T : RealLorentzTensor d X) (x : X) :
|
||||
|
|
|
@ -265,7 +265,7 @@ variable {n m : ℕ} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
|
|||
{X' Y' Z : Type} [Fintype X'] [DecidableEq X'] [Fintype Y'] [DecidableEq Y']
|
||||
[Fintype Z] [DecidableEq Z]
|
||||
|
||||
/-- The multiplication of two real Lorentz Tensors along provided indices. -/
|
||||
/-- The multiplication of two real Lorentz Tensors along specified indices. -/
|
||||
@[simps!]
|
||||
def mulS (T : RealLorentzTensor d X) (S : RealLorentzTensor d Y) (x : X) (y : Y)
|
||||
(h : T.color x = τ (S.color y)) : RealLorentzTensor d ({x' // x' ≠ x} ⊕ {y' // y' ≠ y}) :=
|
||||
|
@ -393,7 +393,7 @@ lemma mulS_symm (T : RealLorentzTensor d X) (S : RealLorentzTensor d Y)
|
|||
mapIso d (Equiv.sumComm _ _) (mulS T S x y h) = mulS S T y x (color_eq_dual_symm h) := by
|
||||
rw [mulS, mulS, mul_symm]
|
||||
|
||||
/-- An equivalence of types assocaited with multipying two consecutive indices,
|
||||
/-- An equivalence of types associated with multiplying two consecutive indices,
|
||||
with the second index appearing on the left. -/
|
||||
def mulSSplitLeft {y y' : Y} (hy : y ≠ y') (z : Z) :
|
||||
{yz // yz ≠ (Sum.inl ⟨y, hy⟩ : {y'' // y'' ≠ y'} ⊕ {z' // z' ≠ z})} ≃
|
||||
|
@ -405,7 +405,7 @@ def mulSSplitLeft {y y' : Y} (hy : y ≠ y') (z : Z) :
|
|||
(Equiv.subtypeSubtypeEquivSubtypeInter _ _)) <|
|
||||
Equiv.subtypeUnivEquiv (fun a => by simp)
|
||||
|
||||
/-- An equivalence of types assocaited with multipying two consecutive indices with the
|
||||
/-- An equivalence of types associated with multiplying two consecutive indices with the
|
||||
second index appearing on the right. -/
|
||||
def mulSSplitRight {y y' : Y} (hy : y ≠ y') (z : Z) :
|
||||
{yz // yz ≠ (Sum.inr ⟨y', hy.symm⟩ : {z' // z' ≠ z} ⊕ {y'' // y'' ≠ y})} ≃
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue