feat: Add results relating to the SM ACCs
This commit is contained in:
parent
e9600cc68b
commit
891979b1c9
8 changed files with 1098 additions and 1 deletions
95
HepLean/AnomalyCancellation/SM/NoGrav/Basic.lean
Normal file
95
HepLean/AnomalyCancellation/SM/NoGrav/Basic.lean
Normal file
|
@ -0,0 +1,95 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.AnomalyCancellation.SM.Basic
|
||||
/-!
|
||||
# Anomaly Cancellation in the Standard Model without Gravity
|
||||
|
||||
This file defines the system of anaomaly equations for the SM without RHN, and
|
||||
without the gravitational ACC.
|
||||
|
||||
-/
|
||||
universe v u
|
||||
|
||||
namespace SM
|
||||
open SMCharges
|
||||
open SMACCs
|
||||
open BigOperators
|
||||
|
||||
/-- The ACC system for the standard model without RHN and without the gravitational ACC. -/
|
||||
@[simps!]
|
||||
def SMNoGrav (n : ℕ) : ACCSystem where
|
||||
numberLinear := 2
|
||||
linearACCs := fun i =>
|
||||
match i with
|
||||
| 0 => @accSU2 n
|
||||
| 1 => accSU3
|
||||
numberQuadratic := 0
|
||||
quadraticACCs := by
|
||||
intro i
|
||||
exact Fin.elim0 i
|
||||
cubicACC := accCube
|
||||
|
||||
namespace SMNoGrav
|
||||
|
||||
variable {n : ℕ}
|
||||
|
||||
lemma SU2Sol (S : (SMNoGrav n).LinSols) : accSU2 S.val = 0 := by
|
||||
have hS := S.linearSol
|
||||
simp at hS
|
||||
exact hS 0
|
||||
|
||||
lemma SU3Sol (S : (SMNoGrav n).LinSols) : accSU3 S.val = 0 := by
|
||||
have hS := S.linearSol
|
||||
simp at hS
|
||||
exact hS 1
|
||||
|
||||
lemma cubeSol (S : (SMNoGrav n).Sols) : accCube S.val = 0 := by
|
||||
exact S.cubicSol
|
||||
|
||||
/-- An element of `charges` which satisfies the linear ACCs
|
||||
gives us a element of `AnomalyFreeLinear`. -/
|
||||
def chargeToLinear (S : (SMNoGrav n).charges) (hSU2 : accSU2 S = 0) (hSU3 : accSU3 S = 0) :
|
||||
(SMNoGrav n).LinSols :=
|
||||
⟨S, by
|
||||
intro i
|
||||
simp at i
|
||||
match i with
|
||||
| 0 => exact hSU2
|
||||
| 1 => exact hSU3⟩
|
||||
|
||||
/-- An element of `AnomalyFreeLinear` which satisfies the quadratic ACCs
|
||||
gives us a element of `AnomalyFreeQuad`. -/
|
||||
def linearToQuad (S : (SMNoGrav n).LinSols) : (SMNoGrav n).QuadSols :=
|
||||
⟨S, by
|
||||
intro i
|
||||
exact Fin.elim0 i⟩
|
||||
|
||||
/-- An element of `AnomalyFreeQuad` which satisfies the quadratic ACCs
|
||||
gives us a element of `AnomalyFree`. -/
|
||||
def quadToAF (S : (SMNoGrav n).QuadSols) (hc : accCube S.val = 0) :
|
||||
(SMNoGrav n).Sols := ⟨S, hc⟩
|
||||
|
||||
/-- An element of `charges` which satisfies the linear and quadratic ACCs
|
||||
gives us a element of `AnomalyFreeQuad`. -/
|
||||
def chargeToQuad (S : (SMNoGrav n).charges) (hSU2 : accSU2 S = 0) (hSU3 : accSU3 S = 0) :
|
||||
(SMNoGrav n).QuadSols :=
|
||||
linearToQuad $ chargeToLinear S hSU2 hSU3
|
||||
|
||||
/-- An element of `charges` which satisfies the linear, quadratic and cubic ACCs
|
||||
gives us a element of `AnomalyFree`. -/
|
||||
def chargeToAF (S : (SMNoGrav n).charges) (hSU2 : accSU2 S = 0) (hSU3 : accSU3 S = 0)
|
||||
(hc : accCube S = 0) : (SMNoGrav n).Sols :=
|
||||
quadToAF (chargeToQuad S hSU2 hSU3) hc
|
||||
|
||||
/-- An element of `AnomalyFreeLinear` which satisfies the quadratic and cubic ACCs
|
||||
gives us a element of `AnomalyFree`. -/
|
||||
def linearToAF (S : (SMNoGrav n).LinSols)
|
||||
(hc : accCube S.val = 0) : (SMNoGrav n).Sols :=
|
||||
quadToAF (linearToQuad S) hc
|
||||
|
||||
end SMNoGrav
|
||||
|
||||
end SM
|
Loading…
Add table
Add a link
Reference in a new issue